معرفی شرکت ها


cvsslib-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

CVSS 2/3 utilities
ویژگی مقدار
سیستم عامل -
نام فایل cvsslib-1.0.0
نام cvsslib
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tom Forbes
ایمیل نویسنده tom@tomforb.es
آدرس صفحه اصلی https://github.com/orf/cvsslib/
آدرس اینترنتی https://pypi.org/project/cvsslib/
مجوز GPL-3.0-or-later
# CVSSlib ![Main workflow](https://github.com/orf/cvsslib/workflows/Tests/badge.svg) A Python 3 library for calculating CVSS v2, CVSS v3 and CVSS v3.1 vectors, with tests. Examples on how to use the library is shown below, and there is some documentation on the internals within the `docs` directory. The library is designed to be completely extendable, so it is possible to implement your own custom scoring systems (or those of your clients) and have it work with the same API, and with the same bells and whistles. **Python 3 only** ## API It's pretty simple to use. `cvsslib` has a `cvss2`, `cvss3` and `cvss31` sub modules that contains all of the enums and calculation code. There are also some functions to manipulate vectors that take these cvss modules as arguments. E.G: ```python from cvsslib import cvss2, cvss31, calculate_vector vector_v2 = "AV:L/AC:M/Au:S/C:N/I:P/A:C/E:U/RL:OF/RC:UR/CDP:N/TD:L/CR:H/IR:H/AR:H" calculate_vector(vector_v2, cvss2) >> (5, 3.5, 1.2) vector_v3 = "CVSS:3.0/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:N/A:H/MPR:N" calculate_vector(vector_v3, cvss31) >> (5.8, 5.8, 7.1) ``` You can access every CVSS enum through the `cvss2`, `cvss3` or `cvss31` modules: ```python from cvsslib import cvss2 # In this case doing from 'cvsslib.cvss2.enums import *' might be less verbose. value = cvss2.ReportConfidence.CONFIRMED if value != cvss2.ReportConfidence.NOT_DEFINED: do_something() ``` There are some powerful mixin functions if you need a class with CVSS members. These functions take a cvss version and return a base class you can inherit from. This class hassome utility functions like `to_vector()` and `from_vector()` you can use. ```python from cvsslib import cvss3, class_mixin BaseClass = class_mixin(cvss3) # Can pass cvss2 module instead class SomeObject(BaseClass): def print_stats(self): for item, value in self.enums: print("{0} is {1}".format(item, value) state = SomeObject() print("\n".join(state.debug())) print(state.calculate()) state.from_vector("CVSS:3.0/AV:L/AC:L/PR:H/UI:R/S:U/C:H/I:N/A:H/MPR:N") print("Vector: " + state.to_vector()) # Access members: if state.report_confidence == ReportConfidence.NOT_DEFINED: do_something() ``` It also supports Django models. Requires the `django-enumfields` package. ```python from cvsslib.contrib.django_model import django_mixin from cvsslib import cvss2 from django.db import models CVSSBase = django_mixin(cvss2) class CVSSModel(models.Model, metaclass=CVSSBase) pass # CVSSModel now has lots of enum you can use x = CVSSModel() x.save() x.exploitability ``` If you want it to work with django Migrations you need to give an attribute name to the `django_mixin` function. This should match the attribute name it is being assigned to: ```python CVSSBase = django_mixin(cvss2, attr_name="CVSSBase") ``` And there is a command line tool available: ```python > cvss CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:C/C:N/I:H/A:N/E:P/RL:U/RC:U/CR:H/IR:L/AR:H/MAV:L/MUI:R/MS:C/MC:N/MI:L/MA:N Base Score: 5.3 Temporal: 4.6 Environment: 1.3 ``` ## Custom Scoring Systems Creating a new scoring system is very simple. First create a Python file with the correct name, e.g `super_scores.py`. Next create some enums with the correct values for your system: ```python from cvsslib.base_enum import BaseEnum class Risk(BaseEnum): """ Vector: S """ HIGH = 1 MEDIUM = 2 LOW = 3 class Difficulty(BaseEnum): """ Vector: D """ DIFFICULT = 1 MODERATE = 2 EASY = 3 ``` And lastly add a `calculate` function in the module that accepts some vector values and returns a result of some kind: ```python def calculate(difficulty: Difficulty, risk: Risk): if difficulty == Difficulty.EASY and risk == Risk.CRITICAL: return "oh nuts you're screwed" return "You're probs ok m8" ``` Once you define this you can pass your `super_scores` module to any cvsslib function like `calculate_vector` or `django_mixin` and it will all just work. You can even serialize the data to and from a vector if you define the correct `vector: X` in the enum docstrings.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl cvsslib-1.0.0:

    pip install cvsslib-1.0.0.whl


نصب پکیج tar.gz cvsslib-1.0.0:

    pip install cvsslib-1.0.0.tar.gz