معرفی شرکت ها


cvcuda-test-0.0.21


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
ویژگی مقدار
سیستم عامل -
نام فایل cvcuda-test-0.0.21
نام cvcuda-test
نسخه کتابخانه 0.0.21
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cvcuda-test/
مجوز -
# CV-CUDA [![License](https://img.shields.io/badge/License-Apache_2.0-yellogreen.svg)](https://opensource.org/licenses/Apache-2.0) ![Version](https://img.shields.io/badge/Version-v0.2.0--alpha-blue) ![Platform](https://img.shields.io/badge/Platform-linux--64_%7C_win--64_wsl2-gray) [![Cuda](https://img.shields.io/badge/CUDA-v11.7-%2376B900?logo=nvidia)](https://developer.nvidia.com/cuda-toolkit-archive) [![GCC](https://img.shields.io/badge/GCC-v11.0-yellow)](https://gcc.gnu.org/gcc-11/changes.html) [![Python](https://img.shields.io/badge/python-v3.7_%7c_v3.8_%7c_v3.9_%7c_v3.10-blue?logo=python)](https://www.python.org/) [![CMake](https://img.shields.io/badge/CMake-v3.22-%23008FBA?logo=cmake)](https://cmake.org/) CV-CUDA is an open-source project that enables building efficient cloud-scale Artificial Intelligence (AI) imaging and computer vision (CV) applications. It uses GPU acceleration to help developers build highly efficient pre- and post- processing pipelines. CV-CUDA originated as a collaborative effort between [NVIDIA][NVIDIA Develop] and [ByteDance][ByteDance]. Refer to our [Developer Guide](DEVELOPER_GUIDE.md) for more information on the operators avaliable as of release v0.2.0-alpha. ## Getting Started To get a local copy up and running follow these steps. ### Pre-requisites - Linux distro: - Ubuntu x86_64 >= 18.04 - WSL2 with Ubuntu >= 20.04 (tested with 20.04) - CUDA Driver >= 11.7 (Not tested on 12.0) - GCC >= 11.0 - Python >= 3.7 - cmake >= 3.22 ### Installation The following steps describe how to install CV-CUDA from pre-built install packages. Choose the installation method that meets your environment needs. #### Tar File Installation ``` tar -xvf nvcv-lib-0.2.0-cuda11-x86_64-linux.tar.xz ``` #### DEB File Installation ``` sudo dpkg -i nvcv-lib-0.2.0-cuda11-x86_64-linux.deb ``` #### Python WHL File Installation ``` pip install nvcv_python-0.2.0-cp38-cp38-linux_x86_64.whl ``` ### Build from Source Follow these instruction to successfully build CV-CUDA from source: 1. Build CV-CUDA ``` cd ~/cvcuda ci/build.sh ``` This will compile a x86 release build of CV-CUDA inside `build-rel` directory. The library is in build-rel/lib, docs in build-rel/docs and executables (tests, etc...) in build-rel/bin. The script accepts some parameters to control the creation of the build tree: ``` ci/build.sh [release|debug] [output build tree path] ``` By default it builds for release. If output build tree path isn't specified, it'll be `build-rel` for release builds, and build-deb for debug. 1. Build Documentation ``` ci/build_docs.sh [build folder] ``` Example: `ci/build_docs.sh build 1. Build Samples ``` ./ci/build_samples.sh [build folder] ``` _(For instructions on how to compile samples outside of the CV-CUDA project, see the [Samples](samples/README.md) documentation)_ 1. Run Tests The tests are in `<buildtree>/bin`. You can run the script below to run all tests at once. Here's an example when build tree is created in `build-rel` ``` build-rel/bin/run_tests.sh ``` 1. Run Samples The samples are installed in `<buildtree>/bin`. You can run the script below to download and serialize the model and run the sample with the test data provided. ```shell ./ci/run_samples.sh ``` 1. Package installers From a succesfully built project, installers can be generated using cpack: ```shell cd build-rel cpack . ``` This will generate in the build directory both Debian installers and tarballs (\*.tar.xz), needed for integration in other distros. For a fine-grained choice of what installers to generate, the full syntax is: ``` cmake . -G [DEB|TXZ] ``` - DEB for Debian packages - TXZ for \*.tar.xz tarballs. ## Contributing CV-CUDA is an open source project. As part of the Open Source Community, we are committed to the cycle of learning, improving, and updating that makes this community thrive. However, as of release v0.2.0-alpha, CV-CUDA is not yet ready for external contributions. To understand the process for contributing the CV-CUDA, see our [Contributing](CONTRIBUTING.md) page. To understand our committment to the Open Source Community, and providing an environment that both supports and respects the efforts of all contributors, please read our [Code of Conduct](CODE_OF_CONDUCT.md). ## License CV-CUDA operates under the [Apache-2.0](LICENSE.md) license. ## Security CV-CUDA, as a NVIDIA program, is committed to secure development practices. Please read our [Security](SECURITY.md) page to learn more. ## Acknowledgements CV-CUDA is developed jointly by NVIDIA and ByteDance. [NVIDIA Develop]: https://developer.nvidia.com/ [ByteDance]: https://www.bytedance.com/


نحوه نصب


نصب پکیج whl cvcuda-test-0.0.21:

    pip install cvcuda-test-0.0.21.whl


نصب پکیج tar.gz cvcuda-test-0.0.21:

    pip install cvcuda-test-0.0.21.tar.gz