معرفی شرکت ها


curve-method-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A quantitative approach to select the optimal number of clusters in a dataset.
ویژگی مقدار
سیستم عامل -
نام فایل curve-method-0.2.2
نام curve-method
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alex Freund
ایمیل نویسنده alexjfreund@gmail.com
آدرس صفحه اصلی https://github.com/alexjfreund/curve_method
آدرس اینترنتی https://pypi.org/project/curve-method/
مجوز MIT
# The Curvature Method [![Code Quality](https://www.code-inspector.com/project/16124/status/svg)](https://frontend.code-inspector.com/public/project/16124/curve_method/dashboard) [![Build Status](https://travis-ci.org/alexjfreund/curve_method.svg?branch=main)](https://travis-ci.org/alexjfreund/curve_method) [![codecov](https://codecov.io/gh/alexjfreund/curve_method/branch/main/graph/badge.svg)](https://codecov.io/gh/alexjfreund/curve_method) [![PyPI version](https://badge.fury.io/py/curve-method.svg)](https://badge.fury.io/py/curve-method) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) A quantitative approach to select the optimal number of clusters in a dataset. ## Table of contents * [Introduction](#introduction) * [Installation](#installation) * [Examples](#examples) * [Dependencies](#dependencies) * [References](#references) * [License](#license) ## Introduction Clustering is a major area in Unsupervised Machine Learning. In many clustering algorithms, the number of desired clusters is given as a parameter. Selecting a dataset's true cluster number _k_ can be challenging, as model accuracy increases with additional clusters, yet too high of a _k_ value leads to overfitting, and a less meaningful model. Because the value of _k_ has a dramatic impact on clustering results, it is important to select it carefully. The most common method of selecting a true cluster number is known as the "Elbow Method", which involves manually selecting a point along an evaluation graph that appears to contain the sharpest corner. There are several problems with this approach, as it is empirical and requires direct intervention. Additionally, the axes of the evaluation graph tend to lie on significantly different scales, which makes it difficult to recognize the optimal _k_ value visually. In contrast, the Curvature Method is a recent approach that quantitatively finds the optimal _k_ value [[1]](#1). This approach can be used in a broad range of clustering applications, further decoupling the learning process from human intervention. ## Installation This project can be installed using pip: ``` pip install curve-method ``` ## Examples First, obtain a dataset as a 2D NumPy array. In these examples, we use the `make_blobs()` generator from Scikit-Learn to simulate a real dataset. ```python from sklearn.datasets import make_blobs X, _ = make_blobs(n_samples=10000, n_features=4, centers=5) ``` ### Evaluation To view the curvature index for each _k_ value up to a specified maximum, use the `curve_scores()` function. ```python from curve_method import curve_scores curve_scores(X, k_max=10) ``` Or, to obtain the _k_ value with maximum curvature, use the `true_k()` function. ```python from curve_method import true_k true_k(X, k_max=10) ``` ### Plotting To view the evaluation graph from the Curvature Method, use the `scatter()` function. If desired, points can be connected on the graph by setting `line=True`. ```python from curve_method import scatter scatter(X, k_max=12, line=False) ``` As an alternative, use the polyfit() function to generate an evaluation graph with a polynomial approximation. The degree of the polynomial _n_ can be specified by setting `deg=n`. ```python from curve_method import polyfit polyfit(X, k_max=12, deg=3) ``` ## Dependencies * NumPy * Matplotlib * Scikit-learn ## References <a name="1"></a> [1] Zhang, Y., Mańdziuk, J., Quek, C.H. and Goh, B.W., 2017. Curvature-based method for determining the number of clusters. Information Sciences, 415, pp.414-428. ## License This project is licensed under the terms of the MIT License.


نیازمندی

مقدار نام
- numpy
- matplotlib
- scikit-learn


نحوه نصب


نصب پکیج whl curve-method-0.2.2:

    pip install curve-method-0.2.2.whl


نصب پکیج tar.gz curve-method-0.2.2:

    pip install curve-method-0.2.2.tar.gz