معرفی شرکت ها


curious-1.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Graph-based data exploration tool
ویژگی مقدار
سیستم عامل -
نام فایل curious-1.2.0
نام curious
نسخه کتابخانه 1.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Benjie Chen, Ginkgo Bioworks
ایمیل نویسنده benjie@ginkgobioworks.com, devs@ginkgobioworks.com
آدرس صفحه اصلی https://github.com/ginkgobioworks/curious
آدرس اینترنتی https://pypi.org/project/curious/
مجوز MIT
Curious ======= .. image:: https://travis-ci.org/ginkgobioworks/curious.svg?branch=master :target: https://travis-ci.org/ginkgobioworks/curious Curious traverses relationships in a relational database. Curious queries allow users to explore relationships among objects, traverse recursive relationships, and jump between loosely connected databases. Curious also provides a JSON interface to the objects. Users and programmers can use Curious queries in analysis scripts and applications. Curious favors a data centric model of application construction; Curious queries expose normalized, relational data, reducing UI dependency on UI specific API end-points serving denormalized data. Changing what data an UI needs no longer requires changing the UI specific end-points. Curious works well with deep data models with many relationships. A Curious query can traverse 10s of foreign key like relationships efficiently. Curious queries always operate on sets of objects, and can connect a small number of objects via a relationship to a large number of objects, then via another relationship from the large number of objects to a smaller set again. For example, Book to Authors to Country of Residence. Unlike GraphQL, Curious outputs relationships between objects, rather than an ever growing tree of JSON representations of the objects. Example ------- :: Book.last(10) Book.author_set Author.country(continent__name="North America") Query Language -------------- The query language allows traversing models by identfying the relationships between them, through foreign keys in Django models, or arbitrary id-mapping functions. A Curious query is a space-separated set of terms, which connect models together by relationships. Several kinds of "joins" are possible using these relationship primitives: - A traditional `inner join` ``Book Book.author_set`` - A `left outer join`: ``Book.last(10) ?(Book.author_set)`` - A `recusrive join`: ``Parent.children_*`` Furthermore, at each stage in a join, `filtering` can happen: - Filtering by `Django field lookups`_: ``Book Book.author_set(id__in=[2,3,4])`` - Filtering by `subquery`: ``Book +(Book.author_set(id__in=[2,3,4]))`` - Filtering by `exclusive subquery` ``Book -(Book.author_set(id__in=[2,3,4]))`` Finally, relationships can generate `counts`: - Counting ``Book Book.author_set__count`` .. _Django field lookups: https://docs.djangoproject.com/en/1.11/ref/models/querysets/#field-lookups Configuring Curious ------------------- :: import myapp.models from curious import model_registry def register(): model_registry.register(myapp.models) Then include ``register`` when your Django app boots up. Using Curious ------------- Turn off CSRF. Deploy it as a Django app. Writing Customized Relationships -------------------------------- Use filter and deferred to real functions. Development ----------- Requires Docker. Spin up your container using the provided ``docker-compose.yml`` file and Makefile by running ``make image``. This creates an image with a correct git configuration for your user, which makes it easy to release. All of the commands you should need to run are defined the ``Makefile`` as targets. All of the targets except for ``image``, are meant to be run inside the Docker container, but can be run from the host machine by having ``-ext`` appended to them. For example, to run tests, you could either call ``make test`` from inside the container, or ``make test-ext`` from the host. If you are modifying the static assets during development, they can be recompiled with the ``build_assets`` make task, or by calling ``python setup.py build_assets``. :: ./make test-ext Deployment ---------- Deployment of tagged commits happens to PyPI automatically via Travis CI. To bump and deploy a new version, run ``make bump/[foo]-ext``, where ``[foo]`` is ``major``, ``minor``, or ``patch``. Then ``git push origin --tags master``.


نیازمندی

مقدار نام
~=1.11 Django
- humanize
==0.5 parsimonious
~=1.0 parsedatetime


نحوه نصب


نصب پکیج whl curious-1.2.0:

    pip install curious-1.2.0.whl


نصب پکیج tar.gz curious-1.2.0:

    pip install curious-1.2.0.tar.gz