معرفی شرکت ها


cuckoopy-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cuckoo Filter implementation in Python
ویژگی مقدار
سیستم عامل -
نام فایل cuckoopy-0.1.1
نام cuckoopy
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rajath Agasthya
ایمیل نویسنده rajathagasthya@gmail.com
آدرس صفحه اصلی https://github.com/rajathagasthya/cuckoopy
آدرس اینترنتی https://pypi.org/project/cuckoopy/
مجوز MIT
cuckoopy: Pure Python implementation of Cuckoo Filter ===================================================== .. image:: https://img.shields.io/pypi/v/cuckoopy.svg :target: https://pypi.python.org/pypi/cuckoopy .. image:: https://img.shields.io/pypi/l/cuckoopy.svg :target: https://pypi.python.org/pypi/cuckoopy .. image:: https://img.shields.io/pypi/wheel/cuckoopy.svg :target: https://pypi.python.org/pypi/cuckoopy .. image:: https://img.shields.io/pypi/pyversions/cuckoopy.svg :target: https://pypi.python.org/pypi/cuckoopy .. image:: https://travis-ci.org/rajathagasthya/cuckoopy.svg?branch=master :target: https://travis-ci.org/rajathagasthya/cuckoopy Cuckoo Filter, like Bloom Filter, is a probabilistic data structure for fast, approximate set membership queries, with some small false positive probability. While Bloom Filters are space efficient and are widely used, they do not support deletion of items from the set without rebuilding the entire filter. This can be overcome with several extensions to Bloom Filters such as Counting Bloom Filters, but with significant space overhead. Cuckoo Filters support adding and removing items dynamically while achieving higher performance than Bloom filters. A Cuckoo Filter is based on partial-key cuckoo hashing that stores only fingerprint of each item inserted. Cuckoo Filters provide higher lookup performance than Bloom Filters and uses less space than Bloom Filters if the target false positive rate is < 3%. The original research paper `Cuckoo Filter: Practically Better Than Bloom <https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf>`_ by Bin Fan, David G. Andersen, Michael Kaminsky and Michael D. Mitzenmacher describes the data structure in more detail. Installation ------------ Make sure you have Python_ (3.5+) installed on your system. If you don't have it, follow `these instructions <https://docs.python.org/3/using/index.html>`_ to install it. .. _Python: https://www.python.org/ Install cuckoopy using: .. code-block:: $ pip install cuckoopy Usage ----- .. code-block:: python >>> from cuckoopy import CuckooFilter # Initialize a cuckoo filter with 10000 buckets with bucket size 4 and fingerprint size of 1 byte >>> cf = CuckooFilter(capacity=10000, bucket_size=4, fingerprint_size=1) Insert an item into the filter: .. code-block:: python >>> cf.insert('Hello!') True Lookup an item in the filter: .. code-block:: python >>> cf.contains('Hello!') True >>> 'Hello!' in cf True Delete an item from the filter: .. code-block:: python >>> cf.delete('Hello!') True Get the size (number of items present) of the filter: .. code-block:: python >>> cf.size 4 >>> len(cf) 4 Running tests locally --------------------- This project uses `pytest <http://docs.pytest.org>`_ for tests. Make sure you have ``tox`` installed on your local machine and from the root directory of the project, run: .. code-block:: $ tox This command runs unit tests in python 3.5 and python 3.6 environments with code coverage details. It also runs pep8 (flake8) checks. To run tox against a specific environment (py35, py36 or pep8), use the ``-e`` option. License ------- `MIT License <https://github.com/rajathagasthya/cuckoopy/blob/master/LICENSE>`_ Useful Links ------------ * `Probabilistic Filters By Example <https://bdupras.github.io/filter-tutorial/>`_ * `Original C++ implementation by the authors of the research paper <https://github.com/efficient/cuckoofilter/>`_


نحوه نصب


نصب پکیج whl cuckoopy-0.1.1:

    pip install cuckoopy-0.1.1.whl


نصب پکیج tar.gz cuckoopy-0.1.1:

    pip install cuckoopy-0.1.1.tar.gz