معرفی شرکت ها


cubestories-0.3.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

CuebStories
ویژگی مقدار
سیستم عامل -
نام فایل cubestories-0.3.9
نام cubestories
نسخه کتابخانه 0.3.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Maciej Janowski
ایمیل نویسنده maciej.janowski@insight-centre.org
آدرس صفحه اصلی https://github.com/MaciejJanowski/CubeStories
آدرس اینترنتی https://pypi.org/project/cubestories/
مجوز MIT
# CubeStories CubeStories allows querying Linked Open Statistical by Providing parameters in a form of Python dictionaries(JSON). Reserach paper underpinning the implementation [Research paper](https://www.researchgate.net/publication/333227519_Mediating_Open_Data_Consumption_-_Identifying_Story_Patterns_for_Linked_Open_Statistical_Data) High-level encapsulation of datastories librabry [DataStories repo](https://github.com/MaciejJanowski/DataStoryPatternLibrary) Test sripts are available at: [Test repor](https://github.com/MaciejJanowski/CubeStoriesTesting) ### Installation ```python pip install cubestories ``` Requirements will be automatically installed with package ### Import/Usage ```python from CubeStories import * ``` # Usage Library implements 3 artifacts required for Data analysis * Metadata Parameters - metadata required for SPARQL queries ```json { "sparqlEndPointUrl":"[SPARQL ENDPOINT URL]", "jsonMetaDataFile":"[directory of JSON file with metadata]" } ``` * Cube Parameters - what properties of cube to be retrieved from endpoint(based on JSON file provided in Metadata Parameters). Values highlighted as: ```--- --- `` has to be specified by a user - replaced to value only ```json { "cube":"---Key of Cube ---", "dimensions":["---List of dimensions---"], "measures":["---List of Measures---"], "hierdimensions": {"---DimKey---":{ "selected_level":"---levelkey---" } } ``` * Analysis Pipeline - JSON-based list of pattern analysis to be performed. Each Pattern will have such template provided ```json { "---PatternName---": { "parameter1":["---list of values---"], "parameter2":"---value---" }, "---PatternName----":{ "parameter1":"---pattern1 value---", "parameter2":["---list of values---"] } } ``` # JSON Template - one of the metadata parameters ```json { "---cube_key---" : { "title":"---title of cube---", "dataset_structure":"---URI for cube structure---", "dimensions":{ "---dimension_key---":{ "dimension_title":"---Title of diemnsion---", "dimension_url":"---URI for dimension---", "dimension_prefix":"---URI for dimension's values---" }, "---dimension_key---":{ "dimension_title":"---Title of diemnsion---", "dimension_url":"---URI for dimension---", "dimension_prefix":"---URI for dimension's values---" } }, "hierarchical_dimensions":{ "---dimension_key---":{ "dimension_title":"---Title of diemnsion---", "dimension_url":"---URI for dimension---", "dimension_prefix":"---URI for dimension's values---", "dimension_levels": { "---level_key---":{ "description":"---description of granularity level---", "granularity":"---integer level of granularity---" }, "---level_key---":{ "description":"---description of granularity level---", "granularity":"---integer level of granularity---" } } } }, "measures":{ "---measure_key---":{ "measure_title":"---Title of measure---", "measure_url":"---URI for measure---" } } } } ``` # Patterns Description ## Comments after ## are just for descriptive purposes. REMOVE THEM WHEN SPECIFYING PIPELINE <!--ts--> * [Measurement and Counting](#MCounting) * [League Table](#LTable) * [Internal Comprison](#InternalComparison) * [Profile Outliers](#ProfileOutliers) * [Dissect Factors](#DissectFactors) * [Highlight Contrast](#HighlightContrast) * [Start Big Drill Down](#StartBigDrillDown) * [Start Small Zoom Out](#StartSmallZoomOut) * [Analysis By Category](#AnalysisByCategory) * [Explore Intersection](#ExploreIntersection) * [Narrating Change Over Time](#NarratingChangeOverTime) <!--te--> # MCounting Measurement and Counting Arithemtical operators applied to whole dataset - basic information regarding data ### Attributes ```json "MeasCount":{ "count_type":"count value" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | count_type | ```String``` | Type of Count to perform ### Output Based on count_type value |Count_type | Description | | ------------------------ | -------------| | raw| data without any analysis performed| | sum| sum across all numeric columns| | mean| mean across all numeric columns| | min| minimum values from all numeric columns| | max| maximum values from all numeric columns| | count| amount of records| # LTable LeagueTable - sorting and extraction specific amount of records ### Attributes ```json "LeagueTab":{ "columns_to_order":["list of columns to order by"], "order_type":"type of order by", "number_of_records":5 } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | columns_to_order | ```list[String]``` | Set of columns to order by | order_type | ```String``` | Type of order (asc/desc) | number_of_records | ```Integer``` | Amount of records to retrieve ### Output Based on sort_type value |Sort_type | Description | | ------------------------ | -------------| | asc|ascending order based on columns provided in ```columns_to_order```| | desc|descending order based on columns provided in ```columns_to_order```| # InternalComparison InternalComparison - comparison of numeric values related to textual values within one column ### Attributes ```json "IntComp":{ "dim_to_compare":"dimension to compare", "meas_to_compare":"measure to compare", "comp_type":"comparison type" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | dim_to_compare | ```String``` | Dimension, which values will be investigated | meas_to_compare | ```String``` | Measure, which numeric values related to ```dim_to_compare``` will be processed | comp_type | ```String``` | Type of comparison to perform ### Output Independent from ```comp_type``` selected, output data will have additional column with numerical column ```meas_to_compare``` processed in specific way. Available types of comparison ```comp_type``` |Comp_type | Description | | ------------------------ | -------------| | diffmax|difference with max value related to specific textual value| | diffmean|difference with arithmetic mean related to specific textual values| | diffmin|difference with minimum value related to specific textual value| # ProfileOutliers ProfileOutliers - detection of unusual values within data (anomalies) ### Attributes ```json "ProfOut":{ "display_type":"Gender" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | display_type | ```String``` | What information display are bound to display (with/without anomalies) ### Output Pattern analysis using ```python scipy``` library will perform quick exploration in serach of unusual values within data. Based on ```display_type``` parameter data will be displayed with/without ddetected unusual values. Available types of displaying ```display_type``` |display_type | Description | | ------------------------ | -------------| | outliers_only|returns rows from dataset where unusual values were detected | | without_outliers|returns dataset with excluded rows where unusual values were detected | # DissectFactors DissectFactors - decomposition of data based on values in dim_to_dissect ### Attributes ```json "DissFact":{ "dim_to_dissect":"dimension to dissect" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | dim_to_dissect | ```String``` | Based on which dimension data should be decomposed ### Output As an output, data will be decomposed in a form of a dictionary, where each subset have values only related to specific value. Dictionary of subdataset will be constructed as a series of paiers where key per each susbet will values from ```dim_to_dissect``` and this key value will be data, where yhis key value was occurring. # HighlightContrast HighlightContrast - partial difference within values related to one textual column ### Attributes ```json "HighCont":{ "dim_to_contrast":"dimension to contrast", "meas_to_contrast":"measure to contrast", "contrast_type":"type of contrast" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | dim_to_contrast | ```String``` | Textual column, from which values will be contrasted | meas_to_contrast | ```String``` | Numerical column, which values are contrasted | contrast_type | ```String``` | Type of contrast to present ### Output Independent from ```contrast_type``` selected, output data will have additional column with numerical column ```meas_to_contrast``` processed in specific way. Available types of comparison ```contrast_type``` |Contrast_type | Description | | ------------------------ | -------------| | partofwhole| difference with max value related to specific textual value| | partofmax| difference with arithmetic mean related to specific textual values| | partofmin|difference with minimum value related to specific textual value| # StartBigDrillDown StartBigDrillDown - data retrieval from multiple hierachical levels. This pattern can be only applied to data not stored already in DataFrame ### Attributes ```json "StBigDrillDown":{ "hierdim_drill_down":{ "Key of hierarchical dimension":["dimlevel1key","dimlevel2key","dimlevel3key"] } } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | hierdim_drill_down |``` dict{hierdim:list[str]} ``` | Hierarchical dimension with list of hierarchy levels to inspect ### Output As an output, data will be retrieved in a form of a dictionary, where each dataset will be retrieved from different hierachy level. List will be provided in```hierdim_drill_down```. Hierachy levels provided by in parameter will automatically sorted in order from most general to most detailed level based on metadata provided. # StartSmallZoomOut StartSmallZoomOut - data retrieval from multiple hierachical levels. This pattern can be only applied to data not stored already in DataFrame ### Attributes ```json "StSmallZoomOut":{ "hierdim_zoom_out":{ "Key of hierarchical dimension":["dimlevel1key","dimlevel2key","dimlevel3key"] } } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | hierdim_zoom_out |``` dict{hierdim:list[str]} ``` | Hierarchical dimension with list of hierarchy levels to inspect ### Output As an output, data will be retrieved in a form of a dictionary, where each dataset will be retrieved from different hierachy level. List will be provided in```hierdim_zoom_out```. Hierachy levels provided by in parameter will automatically sorted in order from most detaile to most general level based on metadata provided. # AnalysisByCategory AnalysisByCategory - ecomposition of data based on values in dim_for_category with analysis performed on each susbet ### Attributes ```json "AByCategory":{ "dim_for_category":"dimension for categorisation", "meas_to_analyse":"measure to perform analysis", "analysis_type":"type of analysis" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | dim_for_category | ```String``` | Dimension, based on which input data will be categorised | meas_to_analyse | ```String``` | Measure, which will be analysed | analysis_type | ```String``` | Type of analysis to perform ### Output As an output, data will be decomposed in a form of a dictionary, where each subset have values only related to specific value. Such subset will get analysed based on ```analysis_type``` parameter Available types of analysis ```analysis_type``` |Analysis_type | Description | | ------------------------ | -------------| | min| Minimum per each category| | max| Maximum per each category| | mean|Arithmetical mean per each category| | sum|Total value from each category| # ExploreIntersection ### Attributes ```json "ExpInt":{ "dim_to_explore":"dimension to explroe across cubes" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | dim_to_explore |``` String ``` | Dimension, which existence within enpoint is going to be investigated ### Output Pattern will return series of datasets, where each will represent occurence of ```dim_to_explore``` in one cube # NarratingChangeOverTime Presenting difference between 2 numerical properties of data ### Attributes ```json "NarrChangeOT":{ "meas_to_narrate":["list of two dimensions to present change"], "narr_type":"type of narration" } ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | meas_to_narrate | ```String``` | Set of 2 measures, which change will be narrated | narr_type | ```String``` | Type of narration to perform ### Output Independent from ```narr_type``` selected, output data will have additional column with numerical values processed in specific way. Available types of analysis ```narr_type``` |Narr_type | Description | | ------------------------ | -------------| | percchange| Percentage change between first nad second property| | diffchange| Quantitive change between first and second property|


نحوه نصب


نصب پکیج whl cubestories-0.3.9:

    pip install cubestories-0.3.9.whl


نصب پکیج tar.gz cubestories-0.3.9:

    pip install cubestories-0.3.9.tar.gz