معرفی شرکت ها


ctu-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python package to perform same transformation to coco-annotation as performed on the image.
ویژگی مقدار
سیستم عامل -
نام فایل ctu-0.2.1
نام ctu
نسخه کتابخانه 0.2.1
نگهدارنده ['Mohit Rajput']
ایمیل نگهدارنده ['mohitrajput901@gmail.com']
نویسنده Mohit Rajput
ایمیل نویسنده mohitrajput901@gmail.com
آدرس صفحه اصلی https://github.com/Cargill-AI/coco-transform-util
آدرس اینترنتی https://pypi.org/project/ctu/
مجوز -
# coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. ## Installation ### Way 1 ```bash $ git clone https://github.com/Cargill-AI/coco-transform-util.git $ cd coco-transform-util $ python3 setup.py install ``` ### Way 2 ```bash $ pip3 install git+https://github.com/Cargill-AI/coco-transform-util.git <<< Username: <user_id or email> <<< Password: <personal access token or SSH key> ``` Personal Access token looks like this `83b318cg875a5g302e5fdaag74afc8ceb6a91a2e`. Reference: [How to generate Personal Access token](https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token) ### Check installation ```python import ctu print(ctu.__version__) ``` ## Benefits and Use Cases 1. Faster Model Training: Decrease the size of images and accordingly its annotation will be changed using this. 2. Flexibility: Rescaling of images and annotations to meet the need of Model/Framework. 3. Cost Saving: Lesser Computation requirement as images can be downscaled. 4. Interpretability: Annotation Visualization is also a part of this package. 5. Data Augmentation: \<more practical in future\> 6. Ability to handle other cases: Added Functionality such as cropping or padding of the annotation can help in multiple other cases such as: - cropping out each object image & annotation from an original image - cropping unnecessary area to zoom in on some particular area. - converting images to 1:1 aspect ratio by using padding and/or cropping. ## How to use it? ### Core There are four core modules inside that helps in performing operations on COCO Annotation. These can imported as shown below: ```python from ctu import WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize, AggreagateCoco ``` It's recommended that you have look at `samples/example_core_modules.py` to understand and explore how to use these. ### Wrapper Making use of wrappers can also come in handly to perform multiple operations in a much simpler and interpretable manner using the functions provided below: ```python from ctu import ( sample_modif_step_di, get_modif_imag, get_modif_coco_annotation, accept_and_process_modif_di, ImgTransform, Visualize ) ``` It's recommended that you have look at `samples/example_highlevel_function.py` to understand and explore how to use these. Some sample data has also been provided with this package at `example_data/*` to explore these functionalities. ## Demo / Sample A sample HTML created from Jupyter-Notebook, contating some sample results has been added to the path `samples/Demo-SampleOutput.html`. ## Version History - v0.1: Core Modules: `WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize`. External Dependency on AMLEET package. - v0.2: Removed the dependency on AMLEET package. Develop Core Module: `AggreagateCoco`. Addition of field "area" under "annotations" in coco. - v0.3: Completed: Remove the out of frame coordinates in annotation. Update & add fields in "annotation" \> "images". Ability to create transparent and general mask `create_mask`. **In Development:** Ability to export transformed image, mask and annotation per image wise and as a whole too. ## Future - Update the image fields in "images" key. (done) - Crop out the annotation which are out-of-frame based on recent image shape. (done) - Annotation Visualization + Mask creation can become a core feature to this library. (done) - Rotate 90 degree left/right. - Flip horizontally or vertically. - COCO to other annotation format can also be a feature to this package. ## Push to pypi ```bash $ python3 setup.py sdist $ twine upload dist/* ```


نحوه نصب


نصب پکیج whl ctu-0.2.1:

    pip install ctu-0.2.1.whl


نصب پکیج tar.gz ctu-0.2.1:

    pip install ctu-0.2.1.tar.gz