معرفی شرکت ها


ctnamecleaner-0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Replace village names and commonly-misspelled Connecticut town names with real town/city names.
ویژگی مقدار
سیستم عامل -
نام فایل ctnamecleaner-0.9
نام ctnamecleaner
نسخه کتابخانه 0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jake Kara
ایمیل نویسنده jake@jakekara.com
آدرس صفحه اصلی https://github.com/jakekara/ctnamecleaner-py
آدرس اینترنتی https://pypi.org/project/ctnamecleaner/
مجوز GPL-3.0
# CT Name Cleaner Resolve village and coloquial Connecticut town names, as well as common misspellings of Connecticut town names to their official town names. This is based on an R package of the same name by my colleague Andrew Ba Tran. This installs a command line script, ctclean, as well as a library particularly meant for use within Jupyter notebooks. by Jake Kara, jake@jakekara.com ### Latest version 0.10.1 ### Installation pip install ctnamecleaner ### Command line util Usage: $ ctclean New\ Preston WASHINGTON $ ctclean "New Preston" WASHINGTON When nothing is found, return None: $ ctclean NotGonnaFindItsVille None Set a custom value to return on error with the --error or -e flag: $ ctclean NotGonnaFindItsVille --error "Ruh Roh" Ruh Roh ### Use with Pandas dataframes See HELP.txt in this directory and the Notebook in the demo/ folder in this repo for an example of translating an entire column with the clean, clean_col and the clean_dataframe() method. clean_dataframe uses pandas' DataFrame.join() method, so it's faster than using the cean() method and applying it with a lambda function yourself. ### Extending with other data Not in CT? Want to map other things? Just make a spreadsheet and put it anywhere, online or locally, that Pandas .read_csv() can open, and then use the constructor to customize the lookup class. >>> l = lookup.Lookup(csv_url="http://path/to/your/sheet", raw_name_col="something", clean_name_col="something_else") ### Contents of HELP.txt Below this point is auto documentation from the lookup class generated from help.py: Help on module ctlookup.lookup in ctlookup: NAME ctlookup.lookup - Main module for CT Name Cleaner FILE /Applications/MAMP/htdocs/tdev/pyctnamecleaner/package/ctlookup/lookup.py CLASSES Lookup class Lookup | Lookup class for CT place names, or any other DF for that matter | | Methods defined here: | | __init__(self, raw_name_col='name', clean_name_col='real.town.name', csv_url=None, use_inet_csv=False) | Constructor for Lookup | | No need to use parameters unless you are specifying a different | source URL. | | Parameters | ----------- | raw_name_col : string, optional | The name of the column with input names, like "New Preston" | | Only use if you're using a different source spreadsheet. | | clean_name_col : string, optional | The name of the column with out names, like "Washington" | | Only use if you're using a different source spreadsheet. | | csv_url : string, optional | A valid local file or remote url to use as an alternative | source spreadsheet. | | use_inet_csv : boolean, optional | Force a reload of the spreadsheet from the web to reflect any | new additions since it was bundled with this python package. | | Defaults to False. The list doesn't change too much anymore. | | clean(self, raw_name, error=None) | Get a clean place name (e.g. input "New Preston" and get | "Washington") | | Parameters | ---------- | raw_name : string | The input name of the place, such as a village or a | common misspelling of a town name | | error : obj, optional | The default to return if no match is found | | Defaults to None | | Returns | ------- | String or the value of None (or anything specified with the error | parameter) if no match is found | | clean_col(self, series, error=None) | Clean a Pandas Series of place names | | Parameters | ---------- | series : Pandas Series | A series containing place names that need to be cleaned | | error : obj, optional | Value to use if no match is found for a given place. | | Defaults to None | | Notes | ----- | Meant as a less opinionated version of clean_dataframe | | clean_dataframe(self, df, town_col, error=None) | Clean an entire column of place names | | Parameters | ---------- | | df : Pandas DataFrame | Dataframe containing to clean | | town_col : valid column label | Label of column containing town names to clean | | error : obj, optional | Default value to use when no match is found. | | Defaults to None | | Notes | ----- | I plan to deprecate this but leave it in place for | backward-compatibility. Use clean_col instead.


نحوه نصب


نصب پکیج whl ctnamecleaner-0.9:

    pip install ctnamecleaner-0.9.whl


نصب پکیج tar.gz ctnamecleaner-0.9:

    pip install ctnamecleaner-0.9.tar.gz