معرفی شرکت ها


ctc-chroma-2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

CTC-based chroma feature exractors
ویژگی مقدار
سیستم عامل -
نام فایل ctc-chroma-2.1
نام ctc-chroma
نسخه کتابخانه 2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Frank Zalkow
ایمیل نویسنده frank.zalkow@audiolabs-erlangen.de
آدرس صفحه اصلی https://github.com/fzalkow/ctc_chroma
آدرس اینترنتی https://pypi.org/project/ctc-chroma/
مجوز MIT
# Using Weakly Aligned Score–Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval ## Background This repository contains accompanying code for the following papers. If you use code from this repository, please consider citing them. [1]: Frank Zalkow and Meinard Müller: Using Weakly Aligned Score–Audio Pairs to Train Deep Chroma Models for Cross-Modal Music Retrieval. In Proceedings of the International Society for Music Information Retrieval Conference, Montréal, Canada, 2020. [2]: Frank Zalkow and Meinard Müller: CTC-Based Learning of Deep Chroma Features for Cross-Modal Music Retrieval. Currently under review. There is an accompanying website for the paper. https://www.audiolabs-erlangen.de/resources/MIR/2020-ISMIR-ctc-chroma ## Usage You can install the code in this repository with pip: pip install ctc_chroma There are two ways to use the models of this repository. The first way is to use a [Jupyter notebook](apply_model.ipynb). This notebook applies the model and visualizes its output. The second way is to use a script to batch process audio files in a folder. This script can be executed like this: python apply_model.py -m MODEL_ID -i INPUT -o OUTPUT Here, `INPUT` is a directory with audio files, `OUTPUT` is a directory for the output files, and `MODEL_ID` specifies the model variant. There are several model variants contained in the repository. These variants are due to different versions of the training data (used in the papers [1] and [2], respectively), due to different training and validation splits, and due to different training procedures. The following table specifies all model identifiers of the repository. | Model Identifier | Used in Paper | Training Procedure | | ------------------------ | ------------- | ------------------------------ | | v1_ctc_train1234valid5 | [1] | CTC | | v1_ctc_train123valid4 | [1] | CTC | | v1_ctc_train2345valid1 | [1] | CTC | | v1_ctc_train234valid5 | [1] | CTC | | v1_ctc_train3451valid2 | [1] | CTC | | v1_ctc_train345valid1 | [1] | CTC | | v1_ctc_train4512valid3 | [1] | CTC | | v1_ctc_train451valid2 | [1] | CTC | | v1_ctc_train5123valid4 | [1] | CTC | | v1_ctc_train512valid3 | [1] | CTC | | v2_ctc_train123valid4 | [2] | CTC | | v2_ctc_train234valid5 | [2] | CTC | | v2_ctc_train345valid1 | [2] | CTC | | v2_ctc_train451valid2 | [2] | CTC | | v2_ctc_train512valid3 | [2] | CTC | | v2_linear_train123valid4 | [2] | Crossentropy, linear alignment | | v2_linear_train234valid5 | [2] | Crossentropy, linear alignment | | v2_linear_train345valid1 | [2] | Crossentropy, linear alignment | | v2_linear_train451valid2 | [2] | Crossentropy, linear alignment | | v2_linear_train512valid3 | [2] | Crossentropy, linear alignment | | v2_strong_train123valid4 | [2] | Crossentropy, strong alignment | | v2_strong_train234valid5 | [2] | Crossentropy, strong alignment | | v2_strong_train345valid1 | [2] | Crossentropy, strong alignment | | v2_strong_train451valid2 | [2] | Crossentropy, strong alignment | | v2_strong_train512valid3 | [2] | Crossentropy, strong alignment | ## Recordings For making it easy to directly try out the code of this repository, we included two excerpts from public domain recordings, which we downloaded from [Musopen](https://musopen.org). The excerpts correspond to the musical sections that are used for the figures in the paper (Figure 3 and 4). However, different performances (not public domain) have been used to generate the figures in the paper. Below you find a small table with details for the excerpts. | Filename | Composer | Work | Performer | Description | | -------------------------------------- | --------- | ------------------------------- | ------------------------------------ | ---------------------------- | | Beethoven_Op067-01_DavidHighSchool.wav | Beethoven | Symphony no. 5, op. 67 | Davis High School Symphony Orchestra | First movement, first theme | | Beethoven_Op002-2-01_Pitman.wav | Beethoven | Piano Sonata no. 2, op. 2 no. 2 | Paul Pitman | First movement, second theme | ## Acknowledgements Frank Zalkow and Meinard Müller are supported by the German Research Foundation (DFG-MU 2686/11-1, MU 2686/12-1). We thank Daniel Stoller for fruitful discussions on the CTC loss, and Michael Krause for proof-reading the manuscript. We also thank Stefan Balke and Vlora Arifi-Müller as well as all students involved in the annotation work, especially Lena Krauß and Quirin Seilbeck. The International Audio Laboratories Erlangen are a joint institution of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Fraunhofer Institute for Integrated Circuits IIS. The authors gratefully acknowledge the compute resources and support provided by the Erlangen Regional Computing Center (RRZE).


نیازمندی

مقدار نام
==1.16.* numpy
==1.* scipy
==2.0.* matplotlib
==7.7.* ipython
==1.0.* jupyter
==4.36.* tqdm
==0.48.* numba
==0.7.* librosa
==2.* tensorflow


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl ctc-chroma-2.1:

    pip install ctc-chroma-2.1.whl


نصب پکیج tar.gz ctc-chroma-2.1:

    pip install ctc-chroma-2.1.tar.gz