معرفی شرکت ها


ct2vl-1.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Converting SARS-CoV-2 PCR test Ct values to viral loads
ویژگی مقدار
سیستم عامل -
نام فایل ct2vl-1.0.4
نام ct2vl
نسخه کتابخانه 1.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Elliot Hill, Ramy Arnaout, Cody Callahan
ایمیل نویسنده rarnaout@bidmc.harvar.edu
آدرس صفحه اصلی https://github.com/Elliot-D-Hill/ct2vl
آدرس اینترنتی https://pypi.org/project/ct2vl/
مجوز -
# ct2vl: C<sub>t</sub> values to viral loads A python package and command line tool to convert SARS-CoV-2 PCR C<sub>t</sub> values to viral loads. ## Installation Assuming python and pip are installed, at the command line, run pip install ct2vl ## Usage ### Python package ```python from ct2vl.conversion import Converter converter = Converter(traces="traces.csv", LoD=100.0, Ct_at_LoD=37.96) ct_values = [23.1, 31.8, 28.4, 34.0, 30.2] viral_loads = converter.ct_to_viral_load(ct_values) ``` In addition to a filepath, the `traces` argument of `Converter` can also accept a pandas DataFrame or numpy ndarray. ### Command line tool To calibrate ct2vl run python3 -m ct2vl calibrate <traces> <LoD> <Ct_at_LoD> For example python3 -m ct2vl calibrate example/path/traces.csv 100.0 37.96 Once ct2vl has been calibrated, C<sub>t</sub> values can be converted to viral loads with python3 -m ct2vl convert <Ct> One or multiple C<sub>t</sub> values can be passed. For example python3 -m ct2vl convert 23.1 or python3 -m ct2vl convert 23.1 31.8 28.4 34.0 30.2 Output can be saved to a file by providing a filepath to the optional flag `--output` python3 -m ct2vl convert 23.1 --output example/path/viral_loads.tsv ## Descriptions of command line arguments The command line tool has two modes `calibrate` and `convert`. * `mode`: `calibrate` uses positive PCR traces and their corresponding C<sub>t</sub> values to calibrate ct2vl for a given machine 1. `traces`: Filepath to a csv file containing PCR reaction traces 2. `LoD`: Limit of detection (LoD): copies of SARS-CoV-2 viral genomes/mL (copies/mL; viral load at the LoD) 3. `Ct_at_LoD`: C<sub>t</sub> value at the limit of detection (LoD) * `mode`: `convert` calculates the viral loads for given C<sub>t</sub> values 1. `Ct`: A list of C<sub>t</sub> values that will be converted to viral loads 2. `--outfile`: An optional filepath to save the results to For `calibrate` mode, `traces` is a csv file where each row corresponds to a PCR reaction curve and each column is a cycle in the reaction (example below). ## Example `traces` csv file This file is available for download [here](https://gist.github.com/Elliot-D-Hill/1ef5b826d23ffd6f29397958ca23eb7b). Each row is a PCR reaction curve for a given covid test and each column is a cycle in the PCR reaction. <div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>...</th> <th>29</th> <th>30</th> <th>31</th> <th>32</th> <th>33</th> <th>34</th> <th>35</th> <th>36</th> <th>37</th> <th>38</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.036339</td> <td>0.105185</td> <td>0.140072</td> <td>0.213080</td> <td>...</td> <td>75.820797</td> <td>103.521744</td> <td>128.057320</td> <td>146.543328</td> <td>158.994255</td> <td>166.878167</td> <td>171.755301</td> <td>174.695708</td> <td>176.480445</td> <td>178.004733</td> </tr> <tr> <th>1</th> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.032859</td> <td>0.106156</td> <td>0.115075</td> <td>...</td> <td>1.498253</td> <td>3.242639</td> <td>6.929736</td> <td>14.413807</td> <td>26.735120</td> <td>42.908856</td> <td>60.642276</td> <td>77.436979</td> <td>90.894471</td> <td>98.702497</td> </tr> <tr> <th>2</th> <td>0.008563</td> <td>0.077690</td> <td>0.112795</td> <td>0.112795</td> <td>0.112795</td> <td>0.112795</td> <td>0.112795</td> <td>0.112795</td> <td>0.250068</td> <td>...</td> <td>239.545742</td> <td>240.219129</td> <td>240.706006</td> <td>241.006463</td> <td>241.206473</td> <td>241.304155</td> <td>241.389261</td> <td>241.421420</td> <td>241.421420</td> <td>241.421420</td> </tr> <tr> <th>3</th> <td>0.000000</td> <td>0.000000</td> <td>0.043038</td> <td>0.061215</td> <td>0.061215</td> <td>0.061215</td> <td>0.061215</td> <td>0.061215</td> <td>0.061215</td> <td>...</td> <td>177.787281</td> <td>185.406029</td> <td>190.989406</td> <td>195.223471</td> <td>198.308876</td> <td>200.551725</td> <td>202.243363</td> <td>203.463125</td> <td>204.342186</td> <td>205.015795</td> </tr> <tr> <th>4</th> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.014523</td> <td>0.038724</td> <td>0.083699</td> <td>0.116689</td> <td>0.131569</td> <td>0.131569</td> <td>...</td> <td>173.993467</td> <td>183.424795</td> <td>190.361277</td> <td>195.482481</td> <td>199.194926</td> <td>201.862966</td> <td>203.861077</td> <td>205.329761</td> <td>206.289263</td> <td>206.824331</td> </tr> <tr> <th>...</th> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <th>16</th> <td>0.000000</td> <td>0.000000</td> <td>0.050974</td> <td>0.085428</td> <td>0.085428</td> <td>0.085428</td> <td>0.085428</td> <td>0.085428</td> <td>0.085428</td> <td>...</td> <td>194.717208</td> <td>201.251802</td> <td>206.238474</td> <td>209.977472</td> <td>212.850522</td> <td>214.995915</td> <td>216.711037</td> <td>217.980163</td> <td>218.880729</td> <td>219.491032</td> </tr> <tr> <th>17</th> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.080598</td> <td>0.126204</td> <td>0.224708</td> <td>0.254782</td> <td>...</td> <td>187.883601</td> <td>199.664452</td> <td>208.208690</td> <td>214.361070</td> <td>218.809716</td> <td>222.239450</td> <td>224.701419</td> <td>226.574815</td> <td>227.972374</td> <td>229.085984</td> </tr> <tr> <th>18</th> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.092015</td> <td>0.215467</td> <td>0.297682</td> <td>...</td> <td>51.416916</td> <td>80.692981</td> <td>112.770737</td> <td>142.339464</td> <td>165.674804</td> <td>182.084870</td> <td>193.083210</td> <td>200.171681</td> <td>204.779740</td> <td>208.237394</td> </tr> <tr> <th>19</th> <td>0.443534</td> <td>0.443534</td> <td>0.443534</td> <td>0.443534</td> <td>0.443534</td> <td>0.443534</td> <td>0.443534</td> <td>0.443534</td> <td>0.443534</td> <td>...</td> <td>70.164310</td> <td>97.490787</td> <td>122.766640</td> <td>142.936795</td> <td>157.475829</td> <td>167.632976</td> <td>174.804737</td> <td>179.870366</td> <td>183.435423</td> <td>186.212804</td> </tr> <tr> <th>20</th> <td>0.000000</td> <td>0.060721</td> <td>0.060721</td> <td>0.064403</td> <td>0.064403</td> <td>0.064403</td> <td>0.064403</td> <td>0.064403</td> <td>0.064403</td> <td>...</td> <td>225.043424</td> <td>226.333617</td> <td>227.403273</td> <td>228.214905</td> <td>228.866112</td> <td>229.370140</td> <td>229.680560</td> <td>229.890248</td> <td>229.967121</td> <td>229.967121</td> </tr> </tbody> </table> </div> ## Example command line output | | LoD | Ct_at_LoD | Ct | viral_load | log10_viral_load | | ---: | ---: | --------: | ----: | ----------: | ---------------: | | 1 | 100 | 37.83 | 14.73 | 3.3277e+08 | 8.52214 | | 2 | 100 | 37.83 | 20.27 | 7.98283e+06 | 6.90216 | | 3 | 100 | 37.83 | 18.21 | 3.13511e+07 | 7.49625 | | 4 | 100 | 37.83 | 18.05 | 3.48959e+07 | 7.54277 | | 5 | 100 | 37.83 | 15.53 | 1.92109e+08 | 8.28355 | ## Fine details *If you use conda:* This package is currently only available from PyPI; however, using pip with conda is not really recommended, and `conda skeleton` requires a setup.py (the deprecated way of doing things). This recipe for installing in a conda environment *seems* to work: ``` conda install -c conda-forge grayskull grayskull pypi ct2vl cd ct2vl conda build . cd .. conda install --use-local ct2vl ``` That being said, if you have suggestions or feedback on how to support conda installation, let us know.


نیازمندی

مقدار نام
>=1.3.0 pandas
>=1.21.5 numpy
>=1.7.0 scipy
>=1.0.2 scikit-learn


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl ct2vl-1.0.4:

    pip install ct2vl-1.0.4.whl


نصب پکیج tar.gz ct2vl-1.0.4:

    pip install ct2vl-1.0.4.tar.gz