معرفی شرکت ها


csrank-2.0.0rc2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Context-sensitive ranking
ویژگی مقدار
سیستم عامل -
نام فایل csrank-2.0.0rc2
نام csrank
نسخه کتابخانه 2.0.0rc2
نگهدارنده ['Karlson Pfannschmidt']
ایمیل نگهدارنده ['kiudee@mail.upb.de']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/kiudee/cs-ranking
آدرس اینترنتی https://pypi.org/project/csrank/
مجوز -
|Build Status| |Coverage| |Binder| ******* CS-Rank ******* CS-Rank is a Python package for context-sensitive ranking and choice algorithms. We implement the following new object ranking/choice architectures: * FATE (First aggregate then evaluate) * FETA (First evaluate then aggregate) In addition, we also implement these algorithms for choice functions: * RankNetChoiceFunction * GeneralizedLinearModel * PairwiseSVMChoiceFunction These are the state-of-the-art approaches implemented for the discrete choice setting: * GeneralizedNestedLogitModel * MixedLogitModel * NestedLogitModel * PairedCombinatorialLogit * RankNetDiscreteChoiceFunction * PairwiseSVMDiscreteChoiceFunction Check out our `interactive notebooks`_ to quickly find out what our package can do. Getting started =============== As a simple "Hello World!"-example we will try to learn the Pareto problem: .. code-block:: python import csrank as cs from csrank import ChoiceDatasetGenerator gen = ChoiceDatasetGenerator(dataset_type='pareto', n_objects=30, n_features=2) X_train, Y_train, X_test, Y_test = gen.get_single_train_test_split() All our learning algorithms are implemented using the scikit-learn estimator API. Fitting our FATENet architecture is as simple as calling the ``fit`` method: .. code-block:: python fate = cs.FATEChoiceFunction() fate.fit(X_train, Y_train) Predictions can then be obtained using: .. code-block:: python fate.predict(X_test) Installation ------------ The latest release version of CS-Rank can be installed from Github as follows:: pip install git+https://github.com/kiudee/cs-ranking.git Another option is to clone the repository and install CS-Rank using:: python setup.py install Dependencies ------------ CS-Rank depends on Tensorflow, Keras, NumPy, SciPy, matplotlib, scikit-learn, scikit-optimize, joblib and tqdm. For data processing and generation you will also need PyGMO, H5Py and pandas. Citing CS-Rank ---------------- You can cite our `arXiv papers`_:: @article{csrank2019, author = {Karlson Pfannschmidt and Pritha Gupta and Eyke H{\"{u}}llermeier}, title = {Learning Choice Functions: Concepts and Architectures }, journal = {CoRR}, volume = {abs/1901.10860}, year = {2019} } @article{csrank2018, author = {Karlson Pfannschmidt and Pritha Gupta and Eyke H{\"{u}}llermeier}, title = {Deep architectures for learning context-dependent ranking functions}, journal = {CoRR}, volume = {abs/1803.05796}, year = {2018} } License -------- `Apache License, Version 2.0 <https://github.com/kiudee/cs-ranking/blob/master/LICENSE>`_ .. |Binder| image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/kiudee/cs-ranking/master?filepath=docs%2Fnotebooks .. |Coverage| image:: https://codecov.io/gh/kiudee/cs-ranking/branch/master/graph/badge.svg :target: https://codecov.io/gh/kiudee/cs-ranking .. |Build Status| image:: https://travis-ci.org/kiudee/cs-ranking.svg?branch=master :target: https://travis-ci.org/kiudee/cs-ranking .. _interactive notebooks: https://mybinder.org/v2/gh/kiudee/cs-ranking/master?filepath=docs%2Fnotebooks .. _arXiv papers: https://arxiv.org/search/cs?searchtype=author&query=Pfannschmidt%2C+K ======= History ======= Unreleased ------------------ No changes yet. 1.2.1 (2020-06-08) ------------------ * Make all our optional dependencies mandatory to work around a bug in our optional imports code. Without this, an exception is raised on import. A proper fix will follow. 1.2.0 (2020-06-05) ------------------ * Change public interface of the learners to be more in line with the scikit-learn interface (ongoing). As part of these changes, it is no longer required to explicitly pass the data dimensionality to the learners on initialization. * Rewrite and document normalized discounted cumulative gain (ndcg) metric to fix numerical issues. See `#32 <https://github.com/kiudee/cs-ranking/issues/32>`__ for details. * Fix passing fit keyword arguments on to the core network in ``FATEChoiceFunction``. * Fix arguments for ``AllPositive`` baseline. * Raise ValueError rather than silently using a default value for unknown passed arguments. * Internal efforts to increase code quality and make use of linting (``black``, ``flake8``, ``doc8``). * Remove old experimental code. 1.1.0 (2020-03-19) ------------------ * Add the expected reciprocal rank (ERR) metric. * Fix bug in callbacks causing the wrong learning rate schedule to be applied. * Make csrank easier to install by making some dependencies optional. * Add guidelines for how to contribute to the project. 1.0.2 (2020-02-12) ------------------ * Fix deployment to GH-pages 1.0.1 (2020-02-03) ------------------ * Add ``HISTORY.rst`` file to track changes over time * Set up travis-ci for deployment to PyPi 1.0.0 (2018-03-05) ------------------ * Initial release


نیازمندی

مقدار نام
>=2.7 h5py
>=1.12.1 numpy
>=0.19.0 scipy
>=0.18.2 scikit-learn
>=0.4 scikit-optimize
>=0.22 pandas
>=2.7 h5py
>=0.6.0 docopt
>=0.9.4 joblib
>=4.11.2 tqdm
>=2.3 keras
<2.0,>=1.5 tensorflow
>=2.7 psycopg2-binary
>=2.7 pygmo
>=3.8 pymc3
>=1.0 theano
>=2.7 psycopg2-binary
>=0.22 pandas
>=2.7 pygmo
>=3.8 pymc3
>=1.0 theano


نحوه نصب


نصب پکیج whl csrank-2.0.0rc2:

    pip install csrank-2.0.0rc2.whl


نصب پکیج tar.gz csrank-2.0.0rc2:

    pip install csrank-2.0.0rc2.tar.gz