معرفی شرکت ها


csb-pandora-0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Model peptide-MHC I complexes using anchor distance restrains in MODELLER
ویژگی مقدار
سیستم عامل -
نام فایل csb-pandora-0.9
نام csb-pandora
نسخه کتابخانه 0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Dario F. Marzella, Farzaneh M. Parizi, Derek van Tilborg, Li Xue
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/X-lab-3D/PANDORA/tree/master
آدرس اینترنتی https://pypi.org/project/csb-pandora/
مجوز Apache Software License 2.0
# PANDORA ![Build](https://github.com/X-lab-3D/PANDORA/actions/workflows/main.yml/badge.svg) [![Coverage Status](https://coveralls.io/repos/github/X-lab-3D/PANDORA/badge.svg?branch=master)](https://coveralls.io/github/X-lab-3D/PANDORA?branch=master) [![Anaconda-Server Badge](https://anaconda.org/csb-nijmegen/csb-pandora/badges/version.svg)](https://anaconda.org/csb-nijmegen/csb-pandora) [![Documentation Status](https://readthedocs.org/projects/csb-pandora/badge/?version=latest)](http://csb-pandora.readthedocs.io/?badge=latest) ### Peptide ANchored mODelling fRAmework for peptide-MHC complexes ![PANDORA](https://github.com/DarioMarzella/PANDORA/blob/master/images/flowchart_pMHCI.png?raw=true) ### Contents - [Overview](#overview) - [Dependencies](#dependencies) - [Installation](#installation) - [Tutorial](#tutorial) - [Code Design](#code-design) - [Output](#output) - [License](./LICENSE) - [Issues](#issues) ## Overview PANDORA is anchor restrained modelling pipeline for generating peptide-MHC structures. It contains multiple functions to pre-process data and it's able to exploit different crucial domain knowledge provided by the user to guide the modelling. PANDORA documentation can be found at: https://csb-pandora.readthedocs.io/en/latest/ ## Dependencies PANDORA requires MODELLER, python and some python libraries to be installed. The following installations are required to start PANDORA installation: - [Python](https://www.python.org/) 3 - conda - pip3 The installation process will take care of installing the following dependencies (see [Installation](#installation)), no need to install them yourself. - [BioPython](https://anaconda.org/conda-forge/biopython) - [muscle](https://anaconda.org/bioconda/muscle) - [Modeller](https://anaconda.org/salilab/modeller) 9.23 or later - [pdb2sql](https://github.com/DeepRank/pdb2sql) (Optional, only for RMSD calculation) The following dependencies can be used to predict peptide anchor postisions, but have to be manually installed: - [NetMHCpan](https://services.healthtech.dtu.dk/software.php) - [NetMHCIIpan](https://services.healthtech.dtu.dk/software.php) ## Installation ### Conda Installation (suggested) #### 1. Get a Modeller Key License: Prior to PANDORA installation, you need to first activate MODELLER's license. Please request MODELLER license at: https://salilab.org/modeller/registration.html Replace XXXX with your MODELLER License key and run the command: ``` alias KEY_MODELLER='XXXX' ``` #### 2. Install PANDORA Install with conda: ``` conda install -c csb-nijmegen csb-pandora -c salilab -c bioconda ``` ### GitHub / Pypi installation #### 1. Install Modeller: Prior to PANDORA installation, you need to first activate MODELLER's license. Please request MODELLER license at: https://salilab.org/modeller/registration.html Replace XXXX with your MODELLER License key and run the command: ``` alias KEY_MODELLER='XXXX' ``` Then Install MODELLER with: ``` conda install -y -c salilab modeller ``` #### 2. Install Muscle PANDORA relies on muscle (https://anaconda.org/bioconda/muscle) that can be installed via bioconda ``` conda install -c bioconda muscle ``` #### 3. Install PANDORA Pypi installation: ``` pip install csb-pandora ``` *Alternatively*, GitHub installation: Clone the repository: ``` git clone https://github.com/X-lab-3D/PANDORA.git ``` Enter the cloned directory and then install the dependencies! ``` cd PANDORA pip install -e . ``` ## Generate / download template Database PANDORA needs a PDB template database to work (retrieved from [IMGT](http://www.imgt.org/3Dstructure-DB/) database). You can download it from https://github.com/X-lab-3D/PANDORA_database (pMHC I only, generated on 23/03/2021) and follow the [instructions](https://github.com/X-lab-3D/PANDORA_database/blob/main/README.md). Please be sure you re-path your database as explained in the instructions. Alternatively, you can generate your template database(suggested) with the following python3 code: ```python ## import requested modules from PANDORA.PMHC import PMHC from PANDORA.Pandora import Pandora from PANDORA.Database import Database ## A. Create local Database db = Database.Database() db.construct_database(save='path/to/pandora_Database.pkl') ``` Note: generating a database can take more than one hour and a half, so we advice to run it as background process or submit it as cluster job. ## (Optional) Install NetMHCpan and/or NetMHCIIpan PANDORA lets the user if he wants to predict peptide's anchor residues instead of using conventional predefined anchor residues. In that case you need to download [NetMHCpan](https://services.healthtech.dtu.dk/cgi-bin/sw_request) (for peptide:MHC class I) and/or [NetMHCIIpan](https://services.healthtech.dtu.dk/cgi-bin/sw_request) (for peptide:MHC class II). To install, you can simply run: ``` python netMHCpan_install.py ``` ## Tutorial #### Example 1 : Generating a peptide:MHC complex given the peptide sequence PANDORA requires at least these information to generate models: - Peptide sequence - MHC allele Steps: A. Load the template database (see installation, point 4) B. Creating a Template object based on the given target information C. Generating *n* number of pMHC models (Default *n=20*) Please note that you can specify output directory yourself, otherwise will be generated in a default directory ```python ## import requested modules from PANDORA.PMHC import PMHC from PANDORA.Pandora import Pandora from PANDORA.Database import Database ## A. Create local Database db = Database.load('path/to/pandora_Database.pkl') ## B. Create Target object target = PMHC.Target(id = 'myTestCase' allele_type = 'HLA-A*0201' peptide = 'LLFGYPVYV', anchors = [2,9]) ## C. Perform modelling case = Pandora.Pandora(target, db) case.model() ``` #### Example 2 : Create multiple loop models in a your given directory There are some options provided that you can input them as arguments to the functions. For instance: - Generate more models for your modelling case - Specify the output directory yourself - Give your target a name - Predict anchors by NetMHCpan Please note that, if *anchors* is not specified or *use_netmhcpan* is set to *False*, PANDORA will automatically assign canonical anchors (P2 and PΩ). ```python from PANDORA.PMHC import PMHC from PANDORA.Pandora import Pandora from PANDORA.Database import Database ## A. load the pregenerated Database of all pMHC PDBs as templates db = Database.load('path/to/pandora_Database.pkl') ## B. Create Target object target = PMHC.Target(id = 'myTestCase' allele_type = ['HLA-B*5301', 'HLA-B*5301'], peptide = 'TPYDINQML', use_netmhcpan = True) ## C. Perform modelling case = Pandora.Pandora(target, db, output_dir = '/your/directory/') case.model(n_loop_models=100) # Generates 100 models ``` #### Example 3 : Benchmark PANDORA on one modelling case Evaluate the framework on a target with a known experimental structure: - Provide the PDB ID for the *Target* class - Set *benchmark=True* for the modelling (calculates L-RMSD to show how far the model is from the near-native structure) ```python from PANDORA.PMHC import PMHC from PANDORA.Pandora import Pandora from PANDORA.Database import Database ## A. Load pregenerated database of all pMHC PDBs as templates db = Database.load('path/to/pandora_Database.pkl') ## B. Create Target object target = PMHC.Target('1A1M', db.MHCI_data['1A1M'].allele_type, db.MHCI_data['1A1M'].peptide, anchors = db.MHCI_data['1A1M'].anchors) ## C. Perform modelling case = Pandora.Pandora(target, db) case.model(benchmark=True) ``` #### Example 4: Model a peptide:MHCI complex with an alpha helix in the peptide Input domain secondary structure prediction information (Helix/Beta strand): ```python from PANDORA.PMHC import PMHC from PANDORA.Pandora import Pandora from PANDORA.Database import Database ## A. Load pregenerated database of all pMHC PDBs as templates db = Database.load('path/to/pandora_Database.pkl') ## B. Create Target object target = PMHC.Target(id = 'myMHCIITestCase' allele_type = ['MH1-B*2101', 'MH1-B*2101'], peptide = 'TAGQSNYDRL', anchors = [2,10], helix = ['4', '9']) ## C. Perform modelling case = Pandora.Pandora(target, db) case.model(helix=target.helix) ``` #### Example 5: Benchmark PANDORA on multiple cases (running in parallel on multiple cores) PANDORA can model large batches of peptides in parallel. You need to provide the following peptide information in a *.tsv* or *.csv* file: - *Peptide sequence, MHC Allele name* Note: you can also add various information to your file, including anchors for each case, templates, IDs. The Wrapper class will take care of generating PANDORA target objects and parallelize the modelling on the given number of cores: ```python from PANDORA.Pandora import Pandora from PANDORA.Database import Database from PANDORA.Wrapper import Wrapper ## A. Load pregenerated database of all pMHC PDBs as templates db = Database.load('path/to/pandora_Database.pkl') ## B. Create the wrapper object wrap = Wrapper() ## C. Create all Target Objects based on peptides in the .tsv file wrap.create_targets('datafile.tsv', db) ## C. Perform modelling wrap.run_pandora(num_cores=128) ``` #### Example 6: Generating a peptide:MHC class II complex given the peptide sequence To model a peptide:MHC class II complex, you only need to specify that in *PMHC.Target()* function: as *MHC_class='II'* (By default it is set to model MHC class I). ```python from PANDORA.PMHC import PMHC from PANDORA.Pandora import Pandora from PANDORA.Database import Database ## A. Load pregenerated database of all pMHC PDBs as templates db = Database.load('path/to/pandora_Database.pkl') target = PMHC.Target(id='myMHCIITestCase' MHC_class = 'II', allele_type = ['HLA-DRA*0102', 'HLA-DRA*0101', 'HLA-DRB1*0101'], peptide = 'GELIGILNAAKVPAD', anchors = [4, 7, 9, 12]) case = Pandora.Pandora(target, db) case.model() ``` Note: For MHC II, no canonical anchors can be defined. Therefore the user must either install and use NetMHCIIpan or directly input the anchors positions as *anchors* in *PMHC.Target()* ## Code Design PANDORA has been implemented in an Object-Oriented Design(OOD). Resulting in a comprehensible and user-friendly framework. see [Class Diagram](https://github.com/DarioMarzella/PANDORA/blob/master/images/class_diagram.png?raw=true) ## Output The following file structure is prepared to store the output files for each case. Each modelling case is given a specific name based on target and template ID. Please note that the modelling results consisting genretaed models by default are stored in *./PANDORA_files/data/outputs/* directory - Main outputs: *molpdf_DOPE.tsv, *BL*.pdb, modeller.log( - Input files prepared for modelling: *contacs_*.list, *.ali* - *.py* files: MODELLER scripts - MODELLER by product outputs(Generated during the modelling): *D0*, DL*, *IL*.pdb , , *.ini, *.lrsr, *.rsr, *.sch, ...* ``` PANDORA_files └── data └── outputs Default directory to save output └── <target_name>_<template_id> Each user's modelling case is given a specific name ├── molpdf_DOPE.tsv Ranking all models by molpdf and DOPE modeller's scoring functions ├── *BL*.pdb Final models ├── modeller.log Printing log file generated by MODELLER, describing modelling steps, or any issues arose along modelling ├── *.ali Alignment file between template(s) and target used for modelling ├── contacts_*.list Contact restraints ├── MyLoop.py MODELLER script to set loop modelling parameters for the peptide ├── cmd_modeller_ini.py MODELLER script to generate an initial model to extract restraints from ├── cmd_modeller.py MODELLER script to set the main modelling parameters ├── *.ini Model generated placing the target atoms at the same coordinate as the template's atoms ├── *IL*.pdb Initial loop model └── ... ``` ## Issues If you have questions or find a bug, please report the issue in the [Github issue channel](https://github.com/X-lab-3D/PANDORA/issues).


نحوه نصب


نصب پکیج whl csb-pandora-0.9:

    pip install csb-pandora-0.9.whl


نصب پکیج tar.gz csb-pandora-0.9:

    pip install csb-pandora-0.9.tar.gz