معرفی شرکت ها


crysnet-0.2.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Labelled Graph Networks for machine learning of crystal.
ویژگی مقدار
سیستم عامل -
نام فایل crysnet-0.2.8
نام crysnet
نسخه کتابخانه 0.2.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zongxiang Hu
ایمیل نویسنده huzongxiang@yahoo.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/crysnet/
مجوز BSD
![](https://img.shields.io/badge/license-BSD--2--Clause-green) ![](https://img.shields.io/badge/build-passing-brightgreen) ![](https://img.shields.io/pypi/v/crysnet) ![](https://img.shields.io/pypi/dm/crysnet) ![](https://img.shields.io/badge/python-3.8-blue) ![](https://img.shields.io/badge/tensorflow-2.6.0-red) ![](https://img.shields.io/github/stars/huzongxiang/CrystalNetwork?style=social) # CrysNet GrysNet is a neural network package that allows researchers to train custom models for crystal modeling tasks. It aims to accelerate the research and application of material science. It provides user a series of state-of-the-art models and supports user's innovative researches. ## Table of Contents * [Hightlights](#hightlights) * [Installation](#installation) * [Usage](#usage) * [Framework](#crysnet-framework) * [Implemented-models](#implemented-models) * [Contributors](#contributors) * [References](#references) * [Contact](#Contact) <a name="Hightlights"></a> ## Hightlights + Easy to installation. + Three steps to fast testing. + Flexible and adaptive to user's trainning task. <a name="Installation"></a> ## Installation CrysNet can be installed easily through anaconda! As follows: + Create a new conda environment named "crysnet" by command, then activate environment "crysnet": ```bash conda create -n crysnet python=3.8 conda activate crysnet ``` It's necessary to create a new conda environment to aviod bugs causing by version conflict. + Configure dependencies of crysnet: ```bash conda install -c conda-forge tensorflow-gpu==2.6.0 ``` + Install pymatgen: ```bash conda install --channel conda-forge pymatgen ``` + Install other dependencies: ```bash conda install --channel conda-forge mendeleev conda install --channel conda-forge graphviz conda install --channel conda-forge pydot conda install --channel conda-forge sklearn ``` + Install crysnet: ```bash pip install crysnet ``` <a name="Usage"></a> ## Usage ### Quick start CrysNet is very easy to use! Just ***three steps*** can finish a fast test using crysnet: + **download test data** Get test datas from https://github.com/huzongxiang/CrystalNetwork/tree/main/datas/ There are three json files in datas: dataset_classification.json, dataset_multiclassification.json and dataset_regression.json. + **prepare workdir** Download datas and put it in your trainning work directory, test.py file should also be put in the directory + **run command** run command: ```bash python test.py ``` You have finished your testing multi-classification trainning! The trainning results and model weight could be saved in /results and /models, respectively. ### Understanding trainning script You can use crysnet by provided trainning scripts in user_easy_trainscript only, but understanding script will help you custom your trainning task! + **get datas** Get current work directory of running trainning script, the script will read datas from 'workdir/datas/' , then saves results and models to 'workdir/results/' and 'workdir/models/' ```python from pathlib import Path ModulePath = Path(__file__).parent.absolute() # workdir ``` + **fed trainning datas** Module Dataset will read data from 'ModulePath/datas/dataset.json', 'task_type' defines regression/classification/multi-classification, 'data_path' gets path of trainning datas. ```python from crysnet.data import Dataset dataset = Dataset(task_type='multiclassfication', data_path=ModulePath) ``` + **generator** Module GraphGenerator feds datas into model during trainning. The Module splits datas into train, valid, test sets, and transform structures data into labelled graphs and gets three generators. BATCH_SIZE is batch size during trainning, DATA_SIZE defines number of datas your used in entire datas, CUTOFF is cutoff of graph edges in crystal. ```python from crysnet.data.generator import GraphGenerator BATCH_SIZE = 128 DATA_SIZE = None CUTOFF = 2.5 Generators = GraphGenerator(dataset, data_size=DATA_SIZE, batch_size=BATCH_SIZE, cutoff=CUTOFF) train_data = Generators.train_generator valid_data = Generators.valid_generator test_data = Generators.test_generator #if task is multiclassfication, should define variable multiclassifiction multiclassification = Generators.multiclassification ``` + **building model** Module GNN defines a trainning framework that accepts a series of models. Crysnet provides a series of mainstream models as your need. ```python from crysnet.models import GNN from crysnet.models.gnnmodel import MpnnBaseModel, TransformerBaseModel, CgcnnModel, GraphAttentionModel gnn = GNN(model=MpnnBaseModel, atom_dim=16 bond_dim=64 num_atom=118 state_dim=16 sp_dim=230 units=32 edge_steps=1 message_steps=1 transform_steps=1 num_attention_heads=8 dense_units=64 output_dim=64 readout_units=64 dropout=0.0 reg0=0.00 reg1=0.00 reg2=0.00 reg3=0.00 reg_rec=0.00 batch_size=BATCH_SIZE spherical_harmonics=True regression=dataset.regression optimizer = 'Adam' ) ``` + **trainning** Using trainning function of model to train. Common trainning parameters can be defined, workdir is current directory of trainning script, it saves results of model during trainning. If test_data exists, model will predict on test_data. ```python gnn.train(train_data, valid_data, test_data, epochs=700, lr=3e-3, warm_up=True, load_weights=False, verbose=1, checkpoints=None, save_weights_only=True, workdir=ModulePath) ``` + **prediction** The simplest method for predicting is using script predict.py in /user_easy_train_scripts. Using predict_data funciton to predict. ```python gnn.predict_datas(test_data, workdir=ModulePath) # predict on test datas with labels y_pred_keras = gnn.predict(datas) # predict on new datas without labels ``` + **preparing your custom datas** If you have your structures (and labels), the Dataset receives pymatgen.core.Structure type. So you should transform your POSCAR or cif to pymatgen.core.Structure type. ```python import os from pymatgen.core.structure import Structure structures = [] # your structure list for cif in os.listdir(cif_path): structures.append(Structure.from_file(cif)) # for POSCAR too # construct your dataset from crysnet.data import Dataset dataset = Dataset(task_type='my_classification', data_path=ModulePath) # task_type could be my_regression, my_classification, my_multiclassification dataset.prepare_x(structures) dataset.prepare_y(labels) # if you have labels used to trainning model, labels could be None in prediction on new datas without labels # alternatively, you can construct dataset as follow dataset.structures = structures dataset.labels = labels # save your structures and labels to dataset in dataset_my*.json dataset.save_datasets(strurtures, labels) # for prediction on new datas without labels, Generators has not attribute multiclassification, should assign definite value Generators = GraphGenerator(dataset, data_size=DATA_SIZE, batch_size=BATCH_SIZE, cutoff=CUTOFF) # dataset.labels is None Generators.multiclassification = 5 multiclassification = Generators.multiclassification # multiclassification = 5 ``` + **models provided by crysnet** We provide GraphModel, MpnnBaseModel, TransformerBaseModel, MpnnModel, TransformerModel, DirectionalMpnnModel, DirectionalTransformerModel and CGCNN model according to your demends. TransformerModel, GraphModel and MpnnModel are different models. TransformerModel is a graph transformer. MpnnModel is a massege passing neural network. GraphModel is a combination of TransformerModel and MpnnModel. MpnnBaseModel and TransformerBaseModel don't take directional informations of crystal into count so them run faster. MpnnBaseModel is the fastest model but accuracy is enough for most tasks. TransformerModel can achieve the hightest accuracy in most tasks. The CGCNN model is the crystal graph convolution neural network model. The GraphAttentionModel is the graph attention neural network. ```python from crysnet.models import GNN from crysnet.models.gnnmodel import MpnnBaseModel, TransformerBaseModel , DirectionalMpnnModel, DirectionalTransformerModel, MpnnModel, TransformerModel, GraphModel, CgcnnModel, GraphAttentionModel ``` + **custom your model and trainning** The Module GNN provides a flexible trainning framework to accept tensorflow.keras.models.Model type customized by user. Yon can custom your model and train the model according to the following example. ```python from tensorflow.keras.models import Model from tensorflow.keras import layers from crysnet.layers import MessagePassing from crysnet.layers import PartitionPadding def MyModel( bond_dim, atom_dim=16, num_atom=118, state_dim=16, sp_dim=230, units=32, message_steps=1, readout_units=64, batch_size=16, ): atom_features = layers.Input((), dtype="int32", name="atom_features_input") atom_features_ = layers.Embedding(num_atom, atom_dim, dtype="float32", name="atom_features")(atom_features) bond_features = layers.Input((bond_dim), dtype="float32", name="bond_features") local_env = layers.Input((6), dtype="float32", name="local_env") state_attrs = layers.Input((), dtype="int32", name="state_attrs_input") state_attrs_ = layers.Embedding(sp_dim, state_dim, dtype="float32", name="state_attrs")(state_attrs) pair_indices = layers.Input((2), dtype="int32", name="pair_indices") atom_graph_indices = layers.Input( (), dtype="int32", name="atom_graph_indices" ) bond_graph_indices = layers.Input( (), dtype="int32", name="bond_graph_indices" ) pair_indices_per_graph = layers.Input((2), dtype="int32", name="pair_indices_per_graph") x = MessagePassing(message_steps)( [atom_features_, edge_features, state_attrs_, pair_indices, atom_graph_indices, bond_graph_indices] ) x = PartitionPadding(batch_size)([x[0], atom_graph_indices]) x = layers.BatchNormalization()(x) x = layers.GlobalAveragePooling1D()(x) x = layers.Dense(readout_units, activation="relu", name='readout0')(x) x = layers.Dense(1, activation="sigmoid", name='final')(x) model = Model( inputs=[atom_features, bond_features, local_env, state_attrs, pair_indices, atom_graph_indices, bond_graph_indices, pair_indices_per_graph], outputs=[x], ) return model from crysnet.models import GNN gnn = GNN(model=MyModel, atom_dim=16, bond_dim=64, num_atom=118, state_dim=16, sp_dim=230, units=32, message_steps=1, readout_units=64, batch_size=16, optimizer='Adam', regression=False, multiclassification=None,) gnn.train(train_data, valid_data, test_data, epochs=700, lr=3e-3, warm_up=True, load_weights=False, verbose=1, checkpoints=None, save_weights_only=True, workdir=ModulePath) ``` You can set edge as your model output. ```python from crysnet.layers import EdgeMessagePassing def MyModel( bond_dim, atom_dim=16, num_atom=118, state_dim=16, sp_dim=230, units=32, message_steps=1, readout_units=64, batch_size=16, ): atom_features = layers.Input((), dtype="int32", name="atom_features_input") atom_features_ = layers.Embedding(num_atom, atom_dim, dtype="float32", name="atom_features")(atom_features) bond_features = layers.Input((bond_dim), dtype="float32", name="bond_features") local_env = layers.Input((6), dtype="float32", name="local_env") state_attrs = layers.Input((), dtype="int32", name="state_attrs_input") state_attrs_ = layers.Embedding(sp_dim, state_dim, dtype="float32", name="state_attrs")(state_attrs) pair_indices = layers.Input((2), dtype="int32", name="pair_indices") atom_graph_indices = layers.Input( (), dtype="int32", name="atom_graph_indices" ) bond_graph_indices = layers.Input( (), dtype="int32", name="bond_graph_indices" ) pair_indices_per_graph = layers.Input((2), dtype="int32", name="pair_indices_per_graph") x = EdgeMessagePassing(units, edge_steps, kernel_regularizer=l2(reg0), sph=spherical_harmonics )([bond_features, local_env, pair_indices]) x = PartitionPadding(batch_size)([x[1], bond_graph_indices]) x = layers.BatchNormalization()(x) x = layers.GlobalAveragePooling1D()(x) x = layers.Dense(readout_units, activation="relu", name='readout0')(x) x = layers.Dense(readout_units//2, activation="relu", name='readout1')(x) x = layers.Dense(1, name='final')(x) model = Model( inputs=[atom_features, bond_features, local_env, state_attrs, pair_indices, atom_graph_indices, bond_graph_indices, pair_indices_per_graph], outputs=[x], ) return model ``` The Module GNN has some basic parameter necessary to be defined but not necessary to be used: ```python class GNN: def __init__(self, model: Model, atom_dim=16, bond_dim=32, num_atom=118, state_dim=16, sp_dim=230, batch_size=16, regression=True, optimizer = 'Adam', multiclassification=None, **kwargs, ): """ pass """ ``` <a name="Crysnet-framework"></a> ## Framework CrysNet <a name="Implemented-models"></a> ## Implemented-models We list currently supported GNN models: * **GCN** from Kipf and Welling: [Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907) (ICLR 2017) * **GAT** from Veličković *et al.*: [Graph Attention Networks](https://arxiv.org/abs/1710.10903) (ICLR 2018) * **GN** from Battaglia *et al.*: [Relational inductive biases, deep learning, and graph networks](https://arxiv.org/pdf/1806.01261v1) * **Transformer** from Vaswani *et al.*: [Attention Is All You Need](https://arxiv.org/pdf/1706.03762) (NIPS 2017) <a name="Contributors"></a> ## Contributors Zongxiang Hu <a name="References"></a> ## References <a name="Contact"></a> ## Contact Please contact me if you have any questions. Mail: huzongxiang@yahoo.com Wechat: voodoozx2015


نحوه نصب


نصب پکیج whl crysnet-0.2.8:

    pip install crysnet-0.2.8.whl


نصب پکیج tar.gz crysnet-0.2.8:

    pip install crysnet-0.2.8.tar.gz