معرفی شرکت ها


cryoCARE-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

cryoCARE is a deep learning approach for cryo-TEM tomogram denoising.
ویژگی مقدار
سیستم عامل -
نام فایل cryoCARE-0.2.2
نام cryoCARE
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tim-Oliver Buchholz, Thorsten Wagner
ایمیل نویسنده tim-oliver.buchholz@fmi.ch, thorsten.wagner@mpi-dortmund.mpg.de
آدرس صفحه اصلی https://github.com/juglab/cryoCARE_pip
آدرس اینترنتی https://pypi.org/project/cryoCARE/
مجوز -
# cryoCARE This package is a memory efficient implementation of [cryoCARE](https://github.com/juglab/cryoCARE_T2T). This setup trains a denoising U-Net for tomographic reconstruction according to the [Noise2Noise](https://arxiv.org/pdf/1803.04189.pdf) training paradigm. Therefore the user has to provide two tomograms of the same sample. The simplest way to achieve this is with direct-detector movie-frames. You can use Warp to generate two reconstructed tomograms based on the even/odd frames. Alternatively, the movie-frames can be split in two halves (e.g. with MotionCor2 `-SplitSum 1` or with IMOD `alignframes -debug 10000`) from which two identical, up to random noise, tomograms can be reconstructed. These two (even and odd) tomograms can be used as input to this cryoCARE implementation. ## Changelog ### Version 0.2 * `cyroCARE_train` produces a compressed and more portable model. This model can be copied and shared with others without relying on a certain folder structure. * `cryoCARE_predict` supports to predict multiple tomograms in one run. Streamlined configuration with respect to the changes of `cryoCARE_train`. * Streamlined installation instructions * CUDA 11 support * Minor changes/ fixed couple of bugs: * Proper padding of tomograms to avoid black frames in the denoised tomograms * Fix computation of validation cut off for small tomograms * Fix `cryoCARE_predict` if no tiling happens ## Installation __Note:__ We assume that you have [miniconda](https://docs.conda.io/en/latest/miniconda.html) installed. First you need to create a conda environment. ### For CUDA 11: ``` conda create -n cryocare_11 python=3.8 cudatoolkit=11.0 cudnn=8.0 -c conda-forge conda activate cryocare_11 pip install tensorflow==2.4 pip install cryoCARE ``` ### For CUDA 10: ``` conda create -n cryocare -c conda-forge -c anaconda python=3 keras-gpu=2.3.1 conda activate cryocare pip install cryoCARE ``` ## Manual cryoCARE uses `.json` configuration files and is run in three steps: ### 1. Prepare Training Data To prepare the training data we have to provide all tomograms on which we want to train. Create an empty file called `train_data_config.json`, copy-paste the following template and fill it in. ``` { "even": [ "/path/to/even.rec" ], "odd": [ "/path/to/odd.rec" ], "patch_shape": [ 72, 72, 72 ], "num_slices": 1200, "split": 0.9, "tilt_axis": "Y", "n_normalization_samples": 500, "path": "./" } ``` #### Parameters: * `"even"`: List of all even tomograms. * `"odd"`: List of all odd tomograms. Note the order has to be the same as in `"even"`. * `"patch_shape"`: Size of the sub-volumes used for training. Should not be smaller than `64, 64, 64`. * `"num_slices"`: Number of sub-volumes extracted per tomograms. * `"tilt_axis"`: Tilt-axis of the tomograms. We split the tomogram along this axis to extract train- and validation data separately. * `"n_normalization_samples"`: Number of sub-volumes extracted per tomograms, which are used to compute `mean` and `standard deviation` for normalization. * `"path"`: The training and validation data are saved here. #### Run Training Data Preparation: After installation of the package we have access to built in Python-scripts which we can call. To run the training data preparation we run the following command: `cryoCARE_extract_train_data.py --conf train_data_config.json` ### 2. Training Create an empty file called `train_config.json`, copy-paste the following template and fill it in. ``` { "train_data": "./", "epochs": 100, "steps_per_epoch": 200, "batch_size": 16, "unet_kern_size": 3, "unet_n_depth": 3, "unet_n_first": 16, "learning_rate": 0.0004, "model_name": "model_name", "path": "./", "gpu_id": 0 } ``` #### Parameters: * `"train_data"`: Path to the directory containing the train- and validation data. This should be the same as the `"path"` from above. * `"epochs"`: Number of epochs used to train the network. * `"steps_per_epoch"`: Number of gradient steps performed per epoch. * `"batch_size"`: Used training batch size. * `"unet_kern_size"`: Convolution kernel size of the U-Net. Has to be an odd number. * `"unet_n_depth"`: Depth of the U-Net. * `"unet_n_first"`: Number of initial feature channels. * `"learning_rate"`: Learning rate of the model training. * `"model_name"`: Name of the model. * `"path"`: Output path for the model. * `"gpu_id"`: This is optional. Provide the GPU ID(s) of the GPUs you wish to use. #### Run Training: To run the training we run the following command: `cryoCARE_train.py --conf train_config.json` You will find a `.tar.gz` file in the directory you specified as `path`. This your model an will be used in the next step. ### 3. Prediction Create an empty file called `predict_config.json`, copy-paste the following template and fill it in. ``` { "path": "path/to/your/model/model_name.tar.gz", "even": "/path/to/even.rec", "odd": "/path/to/odd.rec", "n_tiles": [1,1,1], "output": "denoised.rec", "overwrite": False, "gpu_id": 0 } ``` #### Parameters: * `"path"`: Path to your model file. * `"even"`: Path to directory with even tomograms or a specific even tomogram or a list of specific even tomograms. * `"odd"`: Path to directory with odd tomograms or a specific odd tomogram or a list of specific odd tomograms in the same order as the even tomograms. * `"n_tiles"`: Initial tiles per dimension. Gets increased if the tiles do not fit on the GPU. * `"output"`: Path where the denoised tomograms will be written. * `"overwrite"`: Allow previous files to be overwritten. * `"gpu_id"`: This is optional. Provide the GPU ID(s) of the GPUs you wish to use. #### Run Prediction: To run the training we run the following command: `cryoCARE_predict.py --conf predict_config.json` ## How to Cite ``` @inproceedings{buchholz2019cryo, title={Cryo-CARE: content-aware image restoration for cryo-transmission electron microscopy data}, author={Buchholz, Tim-Oliver and Jordan, Mareike and Pigino, Gaia and Jug, Florian}, booktitle={2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)}, pages={502--506}, year={2019}, organization={IEEE} } @article{buchholz2019content, title={Content-aware image restoration for electron microscopy.}, author={Buchholz, Tim-Oliver and Krull, Alexander and Shahidi, R{\'e}za and Pigino, Gaia and J{\'e}kely, G{\'a}sp{\'a}r and Jug, Florian}, journal={Methods in cell biology}, volume={152}, pages={277--289}, year={2019} } ```


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl cryoCARE-0.2.2:

    pip install cryoCARE-0.2.2.whl


نصب پکیج tar.gz cryoCARE-0.2.2:

    pip install cryoCARE-0.2.2.tar.gz