معرفی شرکت ها


cruzdb-0.5.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Interface to UCSC genomic databases. Also allows things like up/downstream/k-nearest-neighbor queries and mirroring of tables to local sqlite databases
ویژگی مقدار
سیستم عامل -
نام فایل cruzdb-0.5.6
نام cruzdb
نسخه کتابخانه 0.5.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Brent Pedersen
ایمیل نویسنده bpederse@gmail.com
آدرس صفحه اصلی https://github.com/brentp/cruzdb/
آدرس اینترنتی https://pypi.org/project/cruzdb/
مجوز UNKNOWN
A rendered version of the docs is available at: http://pythonhosted.org/cruzdb/ A paper describing cruzdb is in Bioinformatics: http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btt534?ijkey=9I8rQeolKOhzFHv&keytype=ref cruzdb overview =============== The UCSC `Genomes Database`_ is a great resource for annoations, regulation and variation and all kinds of data for a growing number of taxa. This library aims to make utilizing that data simple so that we can do sophisticated analyses without resorting to `awk-ful`_, error-prone manipulations. As motivation, here's an example of some of the capabilities:: >>> from cruzdb import Genome >>> g = Genome(db="hg18") >>> muc5b = g.refGene.filter_by(name2="MUC5B").first() >>> muc5b refGene(chr11:MUC5B:1200870-1239982) >>> muc5b.strand '+' # the first 4 introns >>> muc5b.introns[:4] [(1200999L, 1203486L), (1203543L, 1204010L), (1204082L, 1204420L), (1204682L, 1204836L)] # the first 4 exons. >>> muc5b.exons[:4] [(1200870L, 1200999L), (1203486L, 1203543L), (1204010L, 1204082L), (1204420L, 1204682L)] # note that some of these are not coding because they are < cdsStart >>> muc5b.cdsStart 1200929L # the extent of the 5' utr. >>> muc5b.utr5 (1200870L, 1200929L) # we can get the (first 4) actual CDS's with: >>> muc5b.cds[:4] [(1200929L, 1200999L), (1203486L, 1203543L), (1204010L, 1204082L), (1204420L, 1204682L)] # the cds sequence from the UCSC DAS server as a list with one entry per cds >>> muc5b.cds_sequence #doctest: +ELLIPSIS ['atgggtgccccgagcgcgtgccggacgctggtgttggctctggcggccatgctcgtggtgccgcaggcag', ...] >>> transcript = g.knownGene.filter_by(name="uc001aaa.2").first() >>> transcript.is_coding False # convert a genome coordinate to a local coordinate. >>> transcript.localize(transcript.txStart) 0L # or localize to the CDNA position. >>> print transcript.localize(transcript.cdsStart, cdna=True) None Command-Line Interface ====================== with cruzdb 0.5.4+ installed, given a file `input.bed` you can do:: python -m cruzdb hg18 input.bed refGene cpgIslandExt to have the intervals annotated with the `refGene` and `cpgIslandExt` tables from versoin `hg18`. DataFrames ---------- ... are so in. We can get one from a table as:: >>> df = g.dataframe('cpgIslandExt') >>> df.columns #doctest: +ELLIPSIS Index([chrom, chromStart, chromEnd, name, length, cpgNum, gcNum, perCpg, perGc, obsExp], dtype=object) All of the above can be repeated using knownGene annotations by changing 'refGene' to 'knownGene'. And, it can be done easily for a set of genes. Spatial ------- k-nearest neighbors, upstream, and downstream searches are available. Up and downstream searches use the strand of the query feature to determine the direction: >>> nearest = g.knearest("refGene", "chr1", 9444, 9555, k=6) >>> up_list = g.upstream("refGene", "chr1", 9444, 9555, k=6) >>> down_list = g.downstream("refGene", "chr1", 9444, 9555, k=6) Mirror ------ The above uses the mysql interface from UCSC. It is now possible to mirror any tables from UCSC to a local sqlite database via: # cleanup >>> import os >>> if os.path.exists("/tmp/u.db"): os.unlink('/tmp/u.db') >>> g = Genome('hg18') >>> gs = g.mirror(['chromInfo'], 'sqlite:////tmp/u.db') and then use as: >>> gs.chromInfo <class 'cruzdb.sqlsoup.chromInfo'> Code ---- Most of the per-row features are implemented in `cruzdb/models.py` in the Feature class. If you want to add something to a feature (like the existing feature.utr5) add it here. The tables are reflected using `sqlalchemy`_ and mapped in the \_\_getattr\_\_\ method of the `Genome` class in `cruzdb/__init__.py` So a call like:: genome.knownGene calls the \_\_getattr\_\_ method with the table arg set to 'knownGene' that table is then reflected and an object with parent classes of `Feature` and sqlalchemy's declarative_base is returned. Contributing ------------ YES PLEASE! To start coding, it is probably polite to grab your own copy of some of the UCSC tables so as not to overload the UCSC server. You can run something like:: Genome('hg18').mirror(["refGene", "cpgIslandExt", "chromInfo", "knownGene", "kgXref"], "sqlite:////tmp/hg18.db") Then the connection would be something like:: g = Genome("sqlite:////tmp/hg18.db") If you have a feature you like to use/implement, open a ticket on github for discussion. Below are some ideas. .. _`Genomes Database`: http://genome.ucsc.edu/cgi-bin/hgTables .. _`awk-ful`: https://gist.github.com/1173596 .. _`sqlalchemy`: http://sqlalchemy.org/


نحوه نصب


نصب پکیج whl cruzdb-0.5.6:

    pip install cruzdb-0.5.6.whl


نصب پکیج tar.gz cruzdb-0.5.6:

    pip install cruzdb-0.5.6.tar.gz