معرفی شرکت ها


cross-entropy-method-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The Cross-Entropy Method for either rare-event sampling or optimization.
ویژگی مقدار
سیستم عامل -
نام فایل cross-entropy-method-0.1.1
نام cross-entropy-method
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ido Greenberg
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/ido90/CEM
آدرس اینترنتی https://pypi.org/project/cross-entropy-method/
مجوز MIT
# The Cross Entropy Method The [Cross Entropy Method](http://web.mit.edu/6.454/www/www_fall_2003/gew/CEtutorial.pdf) (CE or CEM) is an approach for optimization or rare-event sampling in a given class of distributions *{D_p}* and a score function *R(x)*. * In its sampling version, it is given a reference *p0* and aims to sample from the tail of the distribution *x ~ (D_p0 | R(x)<q)*, where *q* is defined as either a numeric value *q* or a quantile *alpha* (i.e. *q=q_alpha(R)*). * In its optimization version, it aims to find *argmin_x{R(x)}*. ### Why to use? The sampling version is particularly useful for over-sampling of certain properties. For example, you have a parametric pipeline that generates examples for learning, and you wish to learn more from examples that satisfy X, but you're not sure how to generate such ones. The CEM will learn how to tune the parameters of your pipeline to achieve that, while you can easily control the extremety level. ### How to use? **Installation**: `pip install cross-entropy-method`. The exact implementation of the CEM depends on the distributions family *{D_p}* as defined in the problem. This repo provides a general implementation as an abstract class, where a concrete use requires writing a simple, small inherited class. The attached [`tutorial.ipynb`](https://github.com/ido90/CEM/blob/master/tutorial.ipynb) provides a more detailed background on the CEM and on this package, along with usage examples. | <img src="https://idogreenberg.neocities.org/linked_images/CEM_toy_quantile_sampling.png" width="260"> <img src="https://idogreenberg.neocities.org/linked_images/CEM_toy_optimization.png" width="260"> | | :--: | | **CEM for sampling** (left): the mean of the sample distribution (green) shifts from the mean of the original distribution (blue) towards its 10%-tail (orange). **CEM for optimization** (right): the mean of the sample distribution aims to be minimized. (images from [`tutorial.ipynb`](https://github.com/ido90/CEM/blob/master/tutorial.ipynb)) | ### Supporting non-stationary score functions On top of the standard CEM, we also support a non-stationary score function *R*. This affects the reference distribution of scores and thus the quantile threshold *q* (if specified as a quantile). Thus, we have to repeatedly re-estimate *q*, using importance-sampling correction to compensate for the CEM distributional shift. #### Application to risk-averse reinforcement learning In our separate work (available in [code](https://github.com/ido90/CeSoR) and as a [NeurIPS paper](https://arxiv.org/abs/2205.05138), with Yinlam Chow, Mohammad Ghavamzadeh and Shie Mannor), we demonstrate the use of the CEM for the more realistic problem of sampling high-risk environment-conditions in risk-averse reinforcement learning. There, *D_p* determines the distribution of the environment-conditions, *p0* corresponds to the original distribution (or test distribution), and *R(x; agent)* is the return function of the agent given the conditions *x*. Note that since the agent evolves with the training, the score function is indeed non-stationary. ### Cite us #### This repo: non-stationary cross entropy method ``` @misc{cross_entropy_method, title={Cross Entropy Method with Non-stationary Score Function}, author={Ido Greenberg}, howpublished={\url{https://pypi.org/project/cross-entropy-method/}}, year={2022} } ``` #### Application to risk-averse reinforcement learning ``` @inproceedings{cesor, title={Efficient Risk-Averse Reinforcement Learning}, author={Ido Greenberg and Yinlam Chow and Mohammad Ghavamzadeh and Shie Mannor}, booktitle={Advances in Neural Information Processing Systems}, year={2022} } ```


نیازمندی

مقدار نام
- numpy
- scipy
- pandas


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl cross-entropy-method-0.1.1:

    pip install cross-entropy-method-0.1.1.whl


نصب پکیج tar.gz cross-entropy-method-0.1.1:

    pip install cross-entropy-method-0.1.1.tar.gz