معرفی شرکت ها


crispr-bean-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Base Editor screen analysis [Bayesian Estimation of variant effect] with guide Activity Normalization
ویژگی مقدار
سیستم عامل -
نام فایل crispr-bean-0.1.3
نام crispr-bean
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jayoung Ryu
ایمیل نویسنده jayoung_ryu@g.harvard.edu
آدرس صفحه اصلی https://github.com/pinellolab/CRISPRbean
آدرس اینترنتی https://pypi.org/project/crispr-bean/
مجوز -
# <img src="imgs/beret2.svg" alt="beret" width="150"/> [![PyPI pyversions](https://img.shields.io/pypi/pyversions/berets)](https://pypi.org/project/berets/) [![PyPI version](https://img.shields.io/pypi/v/berets)](https://pypi.org/project/berets/) [![Code style](https://img.shields.io/badge/code%20style-black-black)](https://github.com/psf/black) **B**ase **E**diting with **Re**porter analysis **T**oolkit. This is an analysis toolkit for the pooled CRISPR reporter or sensor data. The reporter technique transfects cells with plasmid with not only sgRNA but with the **target sequence surrogate** which we call **reporter** or **sensor**. <img src="imgs/reporter_construct.svg" alt="Reporter construct" width="500"/> ## Installation Downloading from PyPI: ``` pip install berets ``` ## Count reporter screen data `beret-count-samples` or `beret-count` maps guide into guide counts, **allowing for base transition in spacer sequence**. When the matched reporter information is provided, it can count the **target site edits** and **alleles produced by each guide**. Mapping is efficiently done based on [CRISPResso2](https://github.com/pinellolab/CRISPResso2). <img src="imgs/reporter_screen.svg" alt="reporter screen" width="700"/> ```python beret-count-samples \ --input sample_list.csv \ # sample with lines 'R1_filepath,R2_filepath,sample_name\n' -b A \ # base that is being edited (A/G) -f gRNA_library.csv \ # sgRNA information -o . \ # output directory -r \ # read edit/allele information from reporter -t 12 \ # number of threads --name LDLvar_fullsort \ # name of this sample run ``` ### Input file format #### gRNA_library.csv File should contain following columns. * `name`: gRNA ID column * `sequence`: gRNA sequence * `barcode`: R2 barcode to help match reporter to gRNA Optional: * `strand`: Specifies gRNA strand information relative to reference genome. * `start_pos`: gRNA starting position in the genome. Required when you provide `strand` column. Should specify the smaller coordinate value among start and end position regardless of gRNA strandedness. * `offset`: Specifies absolute positional offset to be added to edited position. Useful when you need amino acid translation results for ex. coding sequence tiling screens. * `target_pos`: If `--match_target_pos` flag is used, input file needs `target_pos` which specifies 0-based relative position of targeted base within Reporter sequence. ### Output file format `count` or `count-samples` produces `.h5ad` and `.xlsx` file with guide and per-guide allele counts. * `.h5ad`: This output file follows annotated matrix format compatible with `AnnData` and is based on `Screen` object in [purturb_tools](https://github.com/pinellolab/perturb-tools). The object contains the per-guide allele counts. * `.guides`: guide information provided in input (`gRNA_library.csv` in above example) * `.condit`: sample information provided in input (`sample_list.csv` in above example) * `.X`: Main guide count matrix, where row corresponds to each guide in `.guides` and columns correspond to samples in `.condit`. Following attributes are included if matched reporter is provided and you chose to read edit/allele information from the reporter using `-r` option. * `.X_bcmatch` (Optional): Contains information about number of barcode-matched reads. Information about R2 barcode should be specified as `barcode` column in your `gRNA_library.csv` file. * `.X_edits` (Optional): If target position of each guide is specified as `target_pos` in input `gRNA_library.csv` file and `--match-target-position` option is provided, the result has the matrix with the number of target edit at the specified positions. * `.allele_tables` (Optional): Dictionary with a single allele count table that counts per guide and allele combination, what is the count per sample. * `.xlsx`: This output file contains `.guides`, `.condit`, `.X[_bcmatch,_edits]`. (`allele_tables` are often too large to write into an Excel!) <img src="imgs/screendata.svg" alt="screendata" width="700"/> ## Using as python module ``` import beret as br cdata = br.read_h5ad("beret_counts_sample.h5ad") ``` See the [**tutorial**](docs/beret_test.ipynb) for more detail.


زبان مورد نیاز

مقدار نام
>=3.8.0 Python


نحوه نصب


نصب پکیج whl crispr-bean-0.1.3:

    pip install crispr-bean-0.1.3.whl


نصب پکیج tar.gz crispr-bean-0.1.3:

    pip install crispr-bean-0.1.3.tar.gz