معرفی شرکت ها


crisp-2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Camera-to-IMU calibration and synchronization toolkit
ویژگی مقدار
سیستم عامل -
نام فایل crisp-2.2
نام crisp
نسخه کتابخانه 2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hannes Ovrén
ایمیل نویسنده hannes.ovren@liu.se
آدرس صفحه اصلی https://github.com/hovren/crisp
آدرس اینترنتی https://pypi.org/project/crisp/
مجوز GPL
Camera-to-IMU calibration toolbox ================================= This toolbox provides a python library to perform joint calibration of a rolling shutter camera-gyroscope system. Given gyroscope and video data, this library can find the following parameters - True gyroscope rate - Time offset - Rotation between camera and gyroscope coordinate frames - Gyroscope measurement bias If you use the package for your work, please cite the following paper Ovrén, H and Forssén, P.-E. "Gyroscope-based video stabilisation with auto-calibration." In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2090–2097). Seattle, WA Can I use these methods for my application? ------------------------------------------- The calibration methods in this package assumes the following - Your camera is calibrated, including known readout time - The camera frame rate is constant, and known - The gyroscope frame rate is constant, and approximately known (within a few Hz, or percent) If the video and gyroscope data are *not uniformly sampled*, but you have access to somewhat reliable timestamps, then you can still use the method if you resample the data to be uniform. By "reliable" we mean timestamps without drift, and no (or negligble) jitter. Changes from 1.0 ---------------- The 2.0 version of crisp features a new fully automatic calibrator. This means that there is no compelling reason to use the semi-manual methods in the previous version of crisp. Therefore the old example scripts have been removed, and the old functions are not imported into the module namespace. No old functions have been removed, so if you want to use them they are still available in submodules. Installation ------------ To use the package you need the following Python packages: - NumPy - SciPy - OpenCV - matplotlib The easiest way is to install from PyPI: :: $ pip install crisp If you want to build the package from source, you also need the *Cython* package. To build and install the ``crisp`` module just run the following commands: :: $ python setup.py build $ python setup.py install For a user-only installation add ``--user`` to the install command. Usage ----- The gyroscope and video data are first loaded into a stream object (``GyroStream``, and a subclass of ``VideoStream`` respectively). To be able to understand how points are mapped from the real world to the image, the video stream also need a ``CameraModel`` (-subclass) instance. :: import crisp gyro = crisp.GyroStream.from_data(some_data_array) camera_model = crisp.AtanCameraModel(...) # One specific choice of camera model video = crisp.VideoStream.from_file(camera_model, video_file_path) We then tie the streams together using a ``AutoCalibrator`` instance. Since the calibration proces need to have estimates of the time offset and relative rotation, these are first estimated using the ``initialize()`` member. This initialization only requires that you give an approximate gyroscope sample rate (in Hz). :: calibrator = crisp.AutoCalibrator(video, gyro) calibrator.initialize(guessed_gyro_rate) result = calibrator.calibrate() # Dict of calibrated parameters Initialization and calibration errors can be caught by handling ``InitializationError`` and ``CalibrationError``. Example scripts ~~~~~~~~~~~~~~~ We bundle one example script ``gopro_dataset_example.py`` which shows how to use the library with the data in our dataset (http://www.cvl.isy.liu.se/research/datasets/gopro-gyro-dataset/). This is the same dataset that was used to produce the above mentioned ICRA 2015 paper. Feedback -------- - For any questions regarding the method and paper, please send an e-mail to hannes.ovren@liu.se. - For issues about the code, you are welcome to either use the tools (issue reporting, etc.) provided by GitHub, or send an e-mail. License ------- All code in this repository is licensed under the GPL version 3.


نحوه نصب


نصب پکیج whl crisp-2.2:

    pip install crisp-2.2.whl


نصب پکیج tar.gz crisp-2.2:

    pip install crisp-2.2.tar.gz