معرفی شرکت ها


crfmnes-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

CR-FM-NES for numerical optimization in Python
ویژگی مقدار
سیستم عامل -
نام فایل crfmnes-1.0.0
نام crfmnes
نسخه کتابخانه 1.0.0
نگهدارنده ['Masahiro Nomura']
ایمیل نگهدارنده ['masahironomura5325@gmail.com']
نویسنده Masahiro Nomura
ایمیل نویسنده masahironomura5325@gmail.com
آدرس صفحه اصلی https://github.com/nmasahiro/crfmnes
آدرس اینترنتی https://pypi.org/project/crfmnes/
مجوز MIT
# CR-FM-NES [[slide]](slide_cec2022.pdf) [CR-FM-NES](https://arxiv.org/abs/2201.11422) [1] implementation. The main feature of CR-FM-NES is that both time and space complexity are linear, with partially considering variable dependencies. Therefore, it is especially suitable for high-dimensional problems (about hundreds to thousands of dimensions). On the other hand, it often achieves high performance even on low-dimensional problems. This is an extension of [FM-NES (Fast Moving Natural Evolution Strategy)](https://arxiv.org/abs/2108.09455) [2] to be applicable in high-dimensional problems. Please e-mail at masahironomura5325@gmail.com if you have any issue. <img width="1215" alt="188303830-aa7b11d0-c6ff-4d1a-9bd8-2ccbf4d7e2dd" src="https://user-images.githubusercontent.com/10880858/211967554-65d632bd-3e77-4725-998c-20f69bb8f5ce.png"> If you find this code useful in your research then please cite: ```bibtex @INPROCEEDINGS{nomura2022fast, title={Fast Moving Natural Evolution Strategy for High-Dimensional Problems}, author={Nomura, Masahiro and Ono, Isao}, booktitle={2022 IEEE Congress on Evolutionary Computation (CEC)}, pages={1-8}, year={2022}, } ``` ## News * **(2022/07)** The paper [Fast Moving Natural Evolution Strategy for High-Dimensional Problems](https://arxiv.org/abs/2201.11422) has been accepted at IEEE CEC'22. * **(2022/12)** CR-FM-NES has been integrated into [evosax](https://github.com/RobertTLange/evosax), which provides JAX-based evolution strategies implementation. Thanks [@RobertTLange](https://github.com/RobertTLange) and [@Obliman](https://github.com/Obliman)! ## Getting Started ### Prerequisites You need only [NumPy](http://www.numpy.org/) that is the package for scientific computing. ### Installing Please run the following command. ```bash $ pip install crfmnes ``` ## Example This is a simple example that objective function is sphere function. Note that the optimization problem is formulated as **minimization** problem. ```python import numpy as np from crfmnes import CRFMNES dim = 3 f = lambda x: np.sum(x**2) mean = np.ones([dim, 1]) * 0.5 sigma = 0.2 lamb = 6 crfmnes = CRFMNES(dim, f, mean, sigma, lamb) x_best, f_best = crfmnes.optimize(100) print("x_best:{}, f_best:{}".format(x_best, f_best)) # x_best:[1.64023896e-05 2.41682149e-05 3.40657594e-05], f_best:2.0136169613476005e-09 ``` ## For Constrained Problems CR-FM-NES can be applied to (implicitly) constrained black-box optimization problems. Please set the objective function value of the infeasible solution to `np.inf`. CR-FM-NES reflects the information and performs an efficient search. Please refer to [3] for the details of the constraint handling methods implemented in this repository. ## Other Versions of CR-FM-NES I really appreciate that CR-FM-NES is implemented in other settings. * C# Implementation: [bakanaouji/CRFMNES_CS](https://github.com/bakanaouji/CRFMNES_CS) * C++ Implementation: [dietmarwo/fast-cma-es](https://github.com/dietmarwo/fast-cma-es/blob/master/_fcmaescpp/crfmnes.cpp) * Jax(Python) Implementation: [RobertTLange/evosax](https://github.com/RobertTLange/evosax/blob/main/evosax/strategies/cr_fm_nes.py) ## References * [1] [M. Nomura, I. Ono, Fast Moving Natural Evolution Strategy for High-Dimensional Problems, IEEE CEC, 2022.](https://arxiv.org/abs/2201.11422) * [2] [M. Nomura, I. Ono, Natural Evolution Strategy for Unconstrained and Implicitly Constrained Problems with Ridge Structure, IEEE SSCI, 2021.](https://arxiv.org/abs/2108.09455) * [3] [M. Nomura, N. Sakai, N. Fukushima, and I. Ono, Distance-weighted Exponential Natural Evolution Strategy for Implicitly Constrained Black-Box Function Optimization, IEEE CEC, 2021.](https://ieeexplore.ieee.org/document/9504865)


نیازمندی

مقدار نام
- numpy


نحوه نصب


نصب پکیج whl crfmnes-1.0.0:

    pip install crfmnes-1.0.0.whl


نصب پکیج tar.gz crfmnes-1.0.0:

    pip install crfmnes-1.0.0.tar.gz