معرفی شرکت ها


crazytext-1.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An Easy To Use Text Cleaning Package For NLP
ویژگی مقدار
سیستم عامل -
نام فایل crazytext-1.0.4
نام crazytext
نسخه کتابخانه 1.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Abhay Parashar
ایمیل نویسنده parasharabhay13@gmail.com
آدرس صفحه اصلی https://github.com/Abhayparashar31
آدرس اینترنتی https://pypi.org/project/crazytext/
مجوز -
## crazytext **crazytext**: ***An Easy To Use Text Cleaning Package For NLP Built In Python*** Some Times Text Can Become Very Crazy That The Content You Want and Really Useful Become Very Hard To Extract. crazytext is here to help you. It offers one line code snippets to clean and analyze your text faster than you. *why do the hard work when there is an option for smart work*- **Creator crazytext** #### Dependencies ``` pip install pandas pip install numpy pip install textblob pip install sklearn pip install lxml pip install nltk ``` #### Installation `pip install crazytext` ### Text Analysis Using crazytext ```python sample_text = 'AI is the future of HUMAN KIND, & Trendiest Topic of Today. #ai #future @aiforfuture https://ai.com (555) 555-1234 <p> Mobile Number </p> (555) 345-1234 <span>Pincode:</span> 224 ' ``` **Let's Import Our Library** ```python import crazytext as ct ``` * Quick Analysis ```python doc = ct.Counter(text=sample_text) doc.info() >> Length of String: 153 Number of URLs: 1 Number of Emails: 0 Number of Words: 25 Average Word Count: 6.12 Number of Stopwords: 4 Total Hashtags: 2 Total Mentions: 1 Total Length of Numeric Data: 7 Special Characters: 154 White Spaces: 28 Number of Vowels: 38 Number of Consonants: 143 Total Uppercase Words 3 Number of Phone Number Inside Text: 2 Observed Sentiment: (0.15, 'Positive') ``` * Step By Step Analysis ```python doc.count_words() >> 25 doc.count_stopwords() >> 4 doc.count_phone_numbers() >> 2 doc.count_uppercase_words() >> 3 ``` You Can Try Many More Methods Just Type `doc.count` and press `tab` to get all the available Counter Methods. *Note : All The Methods For Counter Class Starts With `count_`* ### Text Extraction Using crazytext ```python sample_text = 'AI is the future of HUMAN KIND, & Trendiest Topic of Today. #ai #future @aiforfuture www.ai.com (555) 555-1234 xyz@gmail.com <p> Mobile Number </p> (555) 345-1234 <span>Pincode:</span> 224 ' ``` **Let's Import Our Library** ```python import crazytext as ct extractor = ct.Extractor(text=sample_text) ``` *Extracting Emails* ```python extractor.get_emails() >>['xyz@gmail.com'] ``` *Extracting Phone Numbers* ```python extractor.get_phone_numbers() ['(555) 555-1234', '(555) 345-1234'] ``` *Extracting UPPER CASE words* ```python extractor.get_uppercase_words() >>['AI', 'HUMAN', 'KIND,'] ``` *Extracting Hashtags* ```python extractor.get_hashtags() >>['#ai', '#future'] ``` *Extracting Mentions* ```python extractor.get_mentions() >>['@aiforfuture'] ``` *Extracting HTML Tags* ```python extractor.get_html_tags() >>['<p>', '</p>', '<span>', '</span>'] ``` Try Other Interesting Methods By Installing The Library Using `pip install crazytext`. *Note : All The Methods For Extractor Class Starts With `get_`* ### Text Cleaning Using crazytext * There Are Two Ways To Clean The Text 1. Remove Text Completly. 2. Replace The Text With Its Saying **1. Remove Text Completly.** ```python sample_text = '<h1>The Dark ó Knight</h1> a batman ó movie @batman ó #batman https://batman.com (555) 555-1234 ó 21 22 óó ó' ``` **Let's Import Our Library** ```python import crazytext as ct cleaner = ct.Cleaner(text=sample_text) ``` *Removing HTML Tags* ```python cleaner.remove_html_tags_c() >>' The Dark ó Knight a batman ó movie @batman ó #batman https://batman.com (555) 555-1234 ó 21 22 óó ó' ``` *Removing Phone Numbers* ```python cleaner.remove_phone_numbers_c() >> 'a batman ó movie @batman ó #batman https://batman.com ó 21 22 óó ó' ``` **2. Replace The Text With Its Saying** *Replacing HTML Tags* ```python cleaner.remove_html_tags() >>'HtmlTag The Dark ó Knight a batman ó movie @batman ó #batman https://batman.com (555) 555-1234 ó 21 22 óó ó' ``` *Replaxcing Phone Number* ```python cleaner.remove_phone_numbers() >> 'The Dark ó Knight</h1> a batman ó movie @batman ó #batman https://batman.com PhoneNumber ó 21 22 óó ó' ``` #### Quick Cleaning of A Document To Clean A Doucment Quickly You Can Use `quickclean()` method inside `Cleaner` class. *Quick Clean* ```python import crazytext as ct ct = Cleaner(text=sample_text) ct.quickclean(remove_complete=True,make_base=False) >>'the dark knight batman movie batman batman' ``` You Can Further Remove Duplicates Using The `remove_duplicate_words()` method. ### Working With Dataframes Using crazytext Let's Load `Hotel Reviews Dataframe` From My Github. ```python import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/Abhayparashar31/NLPP_sentiment-analsis-on-hotel-review/main/Restaurant_Reviews.tsv',delimiter = "\t",quoting=3) ``` **Let's Import Our Library and Creat A Object For Our Class `Dataframe`** ```python import crazytext as ct dc = ct.Dataframe(df=df,col='Review') ``` Let's Find Our Dataframe Column Word Frequency Count Using crazytext ```python dc.get_df_words_frequency_count() >> the 405 and 378 I 294 was 292 a 228 ... Seat 1 dirty- 1 gross. 1 unbelievably 1 check. 1 Length: 2967, dtype: int64 ``` **Cleaning The Dataframe Using One Line of Code With The Help of `pretty text`** ```python df['cleaned_reviews'] = dc.clean(remove_complete=True,make_base='lemmatization') df['cleaned_reviews'] >> 0 wow loved place 1 crust not good 2 not tasty texture nasty 3 stopped late may bank holiday rick steve recom... 4 the selection menu great price .... ``` Next, Let's Convert This Cleaned Text Into Vectors For Further Processing ```python vector = ct.Dataframe(df=df,col='cleaned_reviews') vector.to_tfidf(max_features=3500) >> array([[0. , 0. , 0. , 1. , 0. ], [0. , 0.72888336, 0.6846379 , 0. , 0. ], [0. , 0. , 1. , 0. , 0. ], ..., [0. , 0. , 1. , 0. , 0. ], [0. , 0. , 0. , 0. , 1. ], [0. , 0. , 0. , 0. , 0. ]]) ``` ## Project : Sentiment Analysis On Hotel Reviews Let's Build A Model For Classifying different reviews into two different categories positive and negative using our library `crazytext`. ```python import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix,accuracy_score from sklearn.naive_bayes import MultinomialNB dataset = pd.read_csv('https://raw.githubusercontent.com/Abhayparashar31/NLPP_sentiment-analsis-on-hotel-review/main/Restaurant_Reviews.tsv',delimiter = "\t",quoting=3) doc = ct.Dataframe(df=dataset,col='Review') corpus = doc.clean(remove_complete=True,make_base='lemmatization') ## Cleaning X,cv = ct.to_cv(corpus,max_features=3500) ## Vectorization y = dataset['Liked'] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=0) cls = MultinomialNB().fit(X_train, y_train) y_pred = cls.predict(X_test) cm = confusion_matrix(y_test, y_pred) score = accuracy_score(y_test,y_pred) print(cm,score*100) #print(np.concatenate((y_pred.reshape(len(y_pred),1), np.array(y_test).reshape(len(y_test),1)),1)) >>>[[78 19] [21 82]] 80.0 ``` We Received An Accuracy of 80% using our library. Let's use this model to predict some new reviews. ```python new_review = str(input("Enter new review...")) cleaner = ct.Cleaner(text=new_review) cleaned_review = cleaner.quick_clean(remove_complete=True,make_base='lemmatization') new_x = cv.transform([cleaned_review]).toarray() predictions = cls.predict(new_x) if predictions[0]==1: print('Positive 😀') else: print("Negative 😞") >>> Enter new review...worst food and experience Negative 😞 ``` #### FUTURE WORK * More NLP Tasks To Be Added. * Inbuilt Model Support To Be Added. #### Uninstall We Are Unhappy To See You Go, You Can Give Your Feedback By Putting A Comment On The Repo. `pip uninstall crazytext` #### Contributor [Abhay Parashar](https://github.com/Abhayparashar31).


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl crazytext-1.0.4:

    pip install crazytext-1.0.4.whl


نصب پکیج tar.gz crazytext-1.0.4:

    pip install crazytext-1.0.4.tar.gz