معرفی شرکت ها


cr-features-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A library for calculating features suitable for context recognition
ویژگی مقدار
سیستم عامل -
نام فایل cr-features-0.1.7
نام cr-features
نسخه کتابخانه 0.1.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Department of Intelligent Systems, Jožef Stefan Institute
ایمیل نویسنده vito.janko@ijs.si
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cr-features/
مجوز MIT
# Calculating features ## Usage - Install the library with: ```cmd pip install build python -m build ``` Alternative: ```cmd pip install pep517 python -m pep517.build . ``` - Basic usage is: ```python from cr_features.helper_functions import empatica1d_to_array, convert_to2d, frequency_features, hrv_features, gsr_features from cr_features.calculate_features import calculate_features import pandas as pd pathToHrvCsv = "example_data/S2_E4_Data/BVP.csv" windowLength = 500 # get an array of values from HRV empatica file hrv_data, startTimeStamp, sampleRate = empatica1d_to_array(pathToHrvCsv) # Convert the HRV data into 2D array hrv_data_2D = convert_to2d(hrv_data, windowLength) # Create a list with feature names featureNames = [] featureNames.extend(hrv_features) featureNames.extend(frequency_features) pd.set_option('display.max_columns', None) # Calculate features calculatedFeatures = calculate_features(hrv_data_2D, fs=int(sampleRate), feature_names=featureNames) ``` - More usage examples are located in [usage_examples.ipynb](usage_examples.ipynb) file ## Features - Features are returned (from calculateFeatures() function) in a Pandas DataFrame object. - In the case if a feature couldn't be calculated (for example, if input signal is invalid), NaN value is returned. - Further in this section, the list with descriptions of all possible features is presented. ### GSR features: These features are useful for 1D GSR(EDA) signals - `mean`: mean of the signal - `std`: standard deviation of signal - `q25`: 0.25 quantile - `q75`: 0.75 quantile - `qd`: q75 - q25 - `deriv`: sum of gradients of the signal - `power`: power of the signal (mean of squared signal) - `numPeaks`: number of EDA peaks - `ratePeaks`: average number of peaks per second - `powerPeaks`: power of peaks (mean of signal at indexes of peaks) - `sumPosDeriv`: sum of positive derivatives divided by number of all derivatives - `propPosDeriv`: proportion of positive derivatives per all derivatives - `derivTonic`: sum of gradients of the tonic - `sigTonicDifference`: mean of tonic subtracted from signal - `freqFeats`: - `maxPeakAmplitudeChangeBefore`: maximum peak amplitude change before peak - `maxPeakAmplitudeChangeAfter`: maximum peak amplitude change after peak - `avgPeakAmplitudeChangeBefore`: average peak amplitude change before peak - `avgPeakAmplitudeChangeAfter`: average peak amplitude change after peak - `avgPeakChangeRatio`: avg_peak_increase_time / avg_peak_decrease_time - `maxPeakIncreaseTime`: maximum peak increase time - `maxPeakDecreaseTime`: maximum peak decrease time - `maxPeakDuration`: maximum peak duration - `maxPeakChangeRatio`: max_peak_increase_time / max_peak_decrease_time - `avgPeakIncreaseTime`: average peak increase time - `avgPeakDecreaseTime`: average peak decreade time - `avgPeakDuration`: average peak duration - `maxPeakResponseSlopeBefore`: maximum peak response slope before peak - `maxPeakResponseSlopeAfter`: maximum peak response slope after peak - `signalOverallChange`: maximum difference between samples (max(sig)-min(sig)) - `changeDuration`: duration between maximum and minimum values - `changeRate`: change_duration / signal_overall_change - `significantIncrease`: - `significantDecrease`: ### HRV features: These features are useful for 1D HRV(BVP) signals. If number of RR intervals (numRR) is less than `length of sample / (2 * sampling rate)` (30 BPM) or greater than `length of sample / (sampling rate / 4)` (240 BPM), BPM value is incorrect and thus, all other HRV features are set to NaN. - `meanHr`: mean heart rate - `ibi`: mean interbeat interval - `sdnn`: standard deviation of the ibi - `sdsd`: standard deviation of the differences between all subsequent R-R intervals - `rmssd`: root of the mean of the list of squared differences - `pnn20`: the proportion of NN20 intervals to all intervals - `pnn50`: the proportion of NN50 intervals to all intervals - `sd`: - `sd2`: - `sd1/sd2`: sd / sd2 ratio - `numRR`: number of RR intervals ### Accelerometer features: These features are useful for 3D signals from accelerometer - `meanLow`: mean of low-pass filtered signal - `areaLow`: area under the low-pass filtered signal - `totalAbsoluteAreaBand`: sum of absolute areas under the band-pass filtered x, y and z signal - `totalMagnitudeBand`: square root of sum of squared band-pass filtered x, y and z components - `entropyBand`: entropy of band-pass filtered signal - `skewnessBand`: skewness of band-pass filtered signal - `kurtosisBand`: kurtosis of band-pass filtered signal - `postureDistanceLow`: calculates difference between mean values for a given sensor (low-pass filtered) - `absoluteMeanBand`: mean of band-pass filtered signal - `absoluteAreaBand`: area under the band-pass filtered signal - `quartilesBand`: quartiles of band-pass filtered signal - `interQuartileRangeBand`: inter quartile range of band-pass filtered signal - `varianceBand`: variance of band-pass filtered signal - `coefficientOfVariationBand`: dispersion of band-pass filtered signal - `amplitudeBand`: difference between maximum and minimum sample of band-pass filtered signal - `totalEnergyBand`: total magnitude of band-pass filtered signal - `dominantFrequencyEnergyBand`: ratio of energy in dominant frequency - `meanCrossingRateBand`: the number of signal crossings with mean of band-pass filtered signal - `correlationBand`: Pearson's correlation between band-pass filtered axis - `quartilesMagnitudesBand`: quartiles at 25%, 50% and 75% per band-pass filtered signal - `interQuartileRangeMagnitudesBand`: interquartile range of band-pass filtered signal - `areaUnderAccelerationMagnitude`: area under acceleration magnitude - `peaksDataLow`: number of peaks, sum of peak values, peak avg, amplitude avg - `sumPerComponentBand`: sum per component of band-pass filtered signal - `velocityBand`: velocity of the band-pass filtered signal - `meanKineticEnergyBand`: mean kinetic energy 1/2*mV^2 of band-pass filtered signal - `totalKineticEnergyBand`: total kinetic energy 1/2*mV^2 for all axes (band-pass filtered) - `squareSumOfComponent`: squared sum of component - `sumOfSquareComponents`: sum of squared components - `averageVectorLength`: mean of magnitude vector - `averageVectorLengthPower`: square mean of magnitude vector - `rollAvgLow`: maximum difference of low-pass filtered roll samples - `pitchAvgLow`: maximum difference of low-pass filtered pitch samples - `rollStdDevLow`: standard deviation of roll (calculated from low-pass filtered signal) - `pitchStdDevLow`: standard deviation of pitch (calculated from low-pass filtered signal) - `rollMotionAmountLow`: amount of wrist roll (from low-pass filtered signal) motion - `rollMotionRegularityLow`: regularity of wrist roll motion - `manipulationLow`: manipulation of low-pass filtered signals - `rollPeaks`: number of roll peaks, sum of roll peak values, roll peak avg, roll amplitude avg - `pitchPeaks`: number of pitch peaks, sum of pitch peak values, pitch peak avg, pitch amplitude avg - `rollPitchCorrelation`: correlation between roll and peak (obtained from low-pass filtered signal) ### Gyroscope features: These features are useful for 3D signals from gyroscope - `meanLow`: mean of low-pass filtered signal - `areaLow`: area under the low-pass filtered signal - `totalAbsoluteAreaLow`: sum of absolute areas under the low-pass filtered x, y and z signal - `totalMagnitudeLow`: square root of sum of squared band-pass filtered x, y and z components - `entropyLow`: entropy of low-pass filtered signal - `skewnessLow`: skewness of low-pass filtered signal - `kurtosisLow`: kurtosis of low-pass filtered signal - `quartilesLow`: quartiles of low-pass filtered signal - `interQuartileRangeLow`: inter quartile range of low-pass filtered signal - `varianceLow`: variance of low-pass filtered signal - `coefficientOfVariationLow`: dispersion of low-pass filtered signal - `amplitudeLow`: difference between maximum and minimum sample of low-pass filtered signal - `totalEnergyLow`: total magnitude of low-pass filtered signal - `dominantFrequencyEnergyLow`: ratio of energy in dominant frequency - `meanCrossingRateLow`: the number of signal crossings with mean of low-pass filtered signal - `correlationLow`: Pearson's correlation between low-pass filtered axis - `quartilesMagnitudeLow`: quartiles at 25%, 50% and 75% per low-pass filtered signal - `interQuartileRangeMagnitudesLow`: interquartile range of band-pass filtered signal - `areaUnderMagnitude`: area under magnitude - `peaksCountLow`: number of peaks in low-pass filtered signal - `averageVectorLengthLow`: mean of low-pass filtered magnitude vector - `averageVectorLengthPowerLow`: square mean of low-pass filtered magnitude vector ### Generic features: These are generic features, useful for many different types of signals - `autocorrelations`: autocorrelations of the given signal with lags 5, 10, 20, 30, 50, 75 and 100 - `countAboveMean`: number of values in signal that are higher than the mean of signal - `countBelowMean`: number of values in signal that are lower than the mean of signal - `maximum`: maximum value of the signal - `minimum`: minimum value of the signal - `meanAbsChange`: the mean of absolute differences between subsequent time series values - `longestStrikeAboveMean`: longest part of signal above mean - `longestStrikeBelowMean`: longest part of signal below mean - `stdDev`: standard deviation of the signal - `median`: median of the signal - `meanChange`: the mean over the differences between subsequent time series values - `numberOfZeroCrossings`: number of crossings of signal on 0 - `absEnergy`: the absolute energy of the time series which is the sum over the squared values - `linearTrendSlope`: a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one - `ratioBeyondRSigma`: ratio of values that are more than r*std(x) (so r sigma) away from the mean of signal. r in this case is 2.5 - `binnedEntropy`: entropy of binned values - `numOfPeaksAutocorr`: number of peaks of autocorrelations - `numberOfZeroCrossingsAutocorr`: number of crossings of autocorrelations on 0 - `areaAutocorr`: area under autocorrelations - `calcMeanCrossingRateAutocorr`: the number of autocorrelation crossings with mean - `countAboveMeanAutocorr`: umber of values in signal that are higher than the mean of autocorrelation - `sumPer`: sum per component - `sumSquared`: squared sum per component - `squareSumOfComponent`: square sum of component - `sumOfSquareComponents`:sum of square components ### Frequency features: These are frequency features, useful for many different types of signals. The signal is converted to power spectral density signal and features are calculated on this signal - `fqHighestPeakFreqs`: three frequencies corresponding to the largest peaks added to features - `fqHighestPeaks`: three largest peaks added to features - `fqEnergyFeat`: energy calculated as the sum of the squared FFT component magnitudes, and normalized - `fqEntropyFeat`: entropy of the FFT of the signal - `fqHistogramBins`: Binned distribution (histogram) - `fqAbsMean`: absolute mean of the raw signal - `fqSkewness`: skewness of the power spectrum of the data - `fqKurtosis`: kurtosis of the power spectrum of the data - `fqInterquart`: inter quartile range of the raw signal ## Contributors Several people contributed to making this library, both to its implemenetation and feature design: Vito Janko, Matjaž Bostič, Gašper Slapničar, Junoš Lukan, Nina Reščič, Simon Stankoski, Boža Cvetković, Mitja Luštrek


نحوه نصب


نصب پکیج whl cr-features-0.1.7:

    pip install cr-features-0.1.7.whl


نصب پکیج tar.gz cr-features-0.1.7:

    pip install cr-features-0.1.7.tar.gz