معرفی شرکت ها


cowboe-1.0.8.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Construction Of Windows Based On free Energy
ویژگی مقدار
سیستم عامل -
نام فایل cowboe-1.0.8.9
نام cowboe
نسخه کتابخانه 1.0.8.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Naveen Vasudevan, Li Xi
ایمیل نویسنده naveenovan@gmail.com, xili@mcmaster.ca
آدرس صفحه اصلی https://github.com/kuroonai/cowboe
آدرس اینترنتی https://pypi.org/project/cowboe/
مجوز GNU General Public License v3.0
# COWBOE ## _Construction Of Windows Based on free Energy_ [![N|Solid](https://xiresearch.org/wp-content/uploads/2019/11/xiresearch-withcolor5-300x96.png)](https://xiresearch.org/) [![Build Status](https://travis-ci.org/joemccann/dillinger.svg?branch=master)](https://github.com/kuroonai/cowboe) ## What is cowboe COWBOE is a python 3 tool for parameter selection in Umbrella Sampling which is a free energy calculation method used in Molecular dynamics simulations. ## Features - It is a Python 3 module hence easy to install. - Parameter selection which tunes the total number of windows and force constants used with Umbrella sampling are done. - Parameters are optimized using Nelder-mead / Restricted Nelder-Mead simplex optimization algorithm. - Progress of the optimization can be tracked. - Module includes functions to perform comparison and visualization of different PMFs (Potential of Mean Forces / Free energy files) and the NM algorithm results. ## Installation `cowboe requires Python V3.6 or higher to run.` ### Creating a virtual environment ### It is best to install cowboe in a new environment **Using venv** For Linux/macOS, ```sh python3 -m venv /path/to/new/virtual/environment source <venv>/bin/activate ``` For Windows, ```sh c:\>python -m venv c:\path\to\myenv c:\> <venv>\Scripts\activate.bat ``` **Using conda** ```sh conda create -n cowboe python=3.7 conda activate cowboe ``` ### Installing pip ### pip is already installed if you are using Python 3 >=3.4 downloaded from python.org or if you are working in a Virtual Environment created by virtualenv or venv. Just make sure to upgrade pip using, ```sh python3 -m pip install --upgrade pip ``` ### Installing cowboe ### cowboe is available on pypi and can be installed using pip as follows, ```sh pip install cowboe ``` ### Building from source ### Download the source as a zip file from GitHub and extract the files to a new folder. Before building cowboe install the dependencies using pip as shown below and it will resolve all dependencies conflicts. ```sh cd <location of extracted files with setup.py file> pip3 install numpy scipy matplotlib seaborn shapely imageio pandas python setup.py install ``` After the installation cowboe module should be available and it can be checked by using, ```sh python -c "import cowboe" ``` Any error means cowboe was not installed sucessfully. ## Usage cowboe has different functions which perform individual task like running the cowboe algorithm, performing NM optimization, visualization of the pmf curves and summarizing the NM steps. A detailed explanation and examples with the required data files are provided in the examples directory. A simple but comprehensive example is shown below, ```sh from cowboe import pmftopoints, cowboe, cowboefit, settings_update from cowboe import cowboeKS, cowboeRNM, cowboeNM, progressfile, NMprogress, cowboe3Dsurface from cowboe import cowboe_wham, pmfcompare, multi_pmfcompare, cowboe_settings, wham_settings from cowboe import cowboe_trajcut, cowboe_OVL, cowboe_pmfplot, pmfdiff os.chdir('location of the examples folder') cowboe_settings.update({"param B" : 2.0}) pmftopoints(testpmf='test_pmf.txt') cowboe(A=3.5, V = 0.8 , sc =8, name=3) wham_settings.update({"tol" : 0.00015}) cowboe_wham(name = 'benchmark.txt', location ='<cowboe/examples/benchmark>', MCtrials = 0) cowboe_pmfplot(pmf='1.txt', name='1_pmf', splice=0) cowboefit(test='3.txt',bench='benchmark.txt') pmfcompare(pmf1='1.txt', pmf2='3.txt', name='1-3-compare') pmfdiff(pmf1='1.txt', pmf2='2.txt', name='1-2-compare') multi_pmfcompare(pmfs=['1.txt', '2.txt', '3.txt'], name='multiple-compare', splices=[0,0,0]) A = [2.0, 2.9, 3.5] V = [0.75, 0.8700, 0.8000] fit = [1.9834, 1.3844, 4.7587] cowboeNM(A = A, V = V, fit = fit) cowboeRNM(A = A, V = V, fit = fit) p = np.array( [[[2. , 0.75 , 1.9943], [2.9 , 0.87 , 1.8232], [3.5 , 0.8 , 4.7636]], [[2. , 0.75 , 1.9943], [2.9 , 0.87 , 1.8232], [1.6571, 0.82 , 0.9899]], [[2.4028, 0.94 , 2.0045], [2.9 , 0.87 , 1.8232], [1.6571, 0.82 , 0.9899]], [[2.0939, 0.7975, 1.4695], [2.9 , 0.87 , 1.8232], [1.6571, 0.82 , 0.9899]], [[2.0939, 0.7975, 1.4695], [1.1965, 0.7475, 3.5148], [1.6571, 0.82 , 0.9899]], [[2.0939, 0.7975, 1.4695], [2.3242, 0.8394, 1.8202], [1.6571, 0.82 , 0.9899]]]) progressfile(points=p) NMprogress(progressfile = 'progress.txt') ''' The below function creates a 3d surface of the paramater space using the different parameter evaluations, inorder the use this functoin ffmpeg must be installed in the path More information on this is available here, https://www.ffmpeg.org/ https://www.ffmpeg.org/download.html https://anaconda.org/conda-forge/ffmpeg ''' cowboe3Dsurface(progressfile = 'progress.txt') cowboe_trajcut(percentage=50.0, location='</cowboe/examples/benchmark>',\ name='benchmark',listfile='list.txt',start=0) cowboeKS(location='</cowboe/examples/benchmark>', \ listfile='list.txt', percentage = 85) cowboe_OVL(location='</cowboe/examples/benchmark>'\ , listfile='list.txt', name = 'benchmark', distplot=False) settings_update() ``` ## Nelder-Mead simplex algorithm The primary difference between the NM and restricted NM is that the RNM doesnt include the expansion step after reflection. The cowboeNM and cowboeRNM provide possible NM steps for a given simplex and the user would select a step based on the below pseudocode. `Pseudocode of the Simplex Nelder-Mead Optimization` Initialize the simplex with n-1 random starting parameter value combinations e.g. [A, V], where n is the number of parameters being optimized. Restricted Nelder-Mead algorithm: while loop not done calculate centroid calculate reflected if reflected is better than best solution then calculate expanded replace worst solution with better of reflected and expanded else if reflected is worse than all but worst then calculate outward contracted if outward contracted is better than reflected replace worst solution with outward contracted end if else shrink the search area else if reflected is worse than all calculate inward contracted if inward contracted is better than worst replace worst solution with inward contracted end if else shrink the search area else replace worst solution with reflected end if if the solution is within tolerance, exit loop end loop return best solution found cowboe and the WHAM wrapper have been given defaults values which can be modified by changing the cowboe.py file in the installation location or to make temporary changes dict update() of can be used as shown above. More information on this can be obtained by calling the settings_update() function in cowboe. ## License GNU General Public License v3.0


نیازمندی

مقدار نام
- matplotlib
- numpy
- seaborn
- imageio
- scipy
- shapely
- pandas


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl cowboe-1.0.8.9:

    pip install cowboe-1.0.8.9.whl


نصب پکیج tar.gz cowboe-1.0.8.9:

    pip install cowboe-1.0.8.9.tar.gz