معرفی شرکت ها


covsirphy-2.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

COVID-19 data analysis with phase-dependent SIR-derived ODE models
ویژگی مقدار
سیستم عامل -
نام فایل covsirphy-2.9.1
نام covsirphy
نسخه کتابخانه 2.9.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hirokazu Takaya
ایمیل نویسنده lisphilar@outlook.jp
آدرس صفحه اصلی https://github.com/lisphilar/covid19-sir/
آدرس اینترنتی https://pypi.org/project/covsirphy/
مجوز Apache-2.0
<img src="https://raw.githubusercontent.com/lisphilar/covid19-sir/master/docs/logo/covsirphy_headline.png" width="390" alt="CovsirPhy: COVID-19 analysis with phase-dependent SIRs"> [![PyPI version](https://badge.fury.io/py/covsirphy.svg)](https://badge.fury.io/py/covsirphy) [![Downloads](https://pepy.tech/badge/covsirphy)](https://pepy.tech/project/covsirphy) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/covsirphy)](https://badge.fury.io/py/covsirphy) [![GitHub license](https://img.shields.io/github/license/lisphilar/covid19-sir)](https://github.com/lisphilar/covid19-sir/blob/master/LICENSE) [![Quality Check](https://github.com/lisphilar/covid19-sir/actions/workflows/test.yml/badge.svg)](https://github.com/lisphilar/covid19-sir/actions/workflows/test.yml) [![Test Coverage](https://codecov.io/gh/lisphilar/covid19-sir/branch/master/graph/badge.svg?token=9Z8Z1UHY3I)](https://codecov.io/gh/lisphilar/covid19-sir) # CovsirPhy introduction [<strong>Documentation</strong>](https://lisphilar.github.io/covid19-sir/index.html) | [<strong>Installation</strong>](https://lisphilar.github.io/covid19-sir/markdown/INSTALLATION.html) | [<strong>Tutorial</strong>](<https://lisphilar.github.io/covid19-sir/01_data_preparation.html>) | [<strong>API reference</strong>](https://lisphilar.github.io/covid19-sir/covsirphy.html) | [<strong>GitHub</strong>](https://github.com/lisphilar/covid19-sir) | [<strong>Qiita (Japanese)</strong>](https://qiita.com/tags/covsirphy) <strong>CovsirPhy is a Python library for infectious disease (COVID-19: Coronavirus disease 2019, Monkeypox 2022) data analysis with phase-dependent SIR-derived ODE models. We can download datasets and analyze them easily. Scenario analysis with CovsirPhy enables us to make data-informed decisions. </strong> ## Inspiration * Monitor the spread of COVID-19/Monkeypox with SIR-derived ODE models * Predict the number of cases in each country/province * Find the relationship of reproductive number and measures taken by each country <strong>If you have ideas or need new functionalities, please join this project. Any suggestions with [Github Issues](https://github.com/lisphilar/covid19-sir/issues/new/choose) and [Twitter: @lisphilar](https://twitter.com/lisphilar) are always welcomed. Questions are also great. Please refer to [Guideline of contribution](https://lisphilar.github.io/covid19-sir/CONTRIBUTING.html).</strong> ## Installation The latest stable version of CovsirPhy is available at [PyPI (The Python Package Index): covsirphy](https://pypi.org/project/covsirphy/) and supports Python 3.8 or newer versions. Details are explained in [Documentation: Installation](https://lisphilar.github.io/covid19-sir/INSTALLATION.html). ```Bash pip install --upgrade covsirphy ``` > **Warning** > We cannot use `covsirphy` on Google Colab, which uses Python 3.7. [Binder](https://mybinder.org/) is recommended. ## Demo Quickest tour of CovsirPhy is here. The following codes analyze the records in Japan. ```Python import covsirphy as cs # Data preparation,time-series segmentation, parameter estimation with SIR-F model snr = cs.ODEScenario.auto_build(geo="Japan", model=cs.SIRFModel) # Check actual records snr.simulate(name=None); # Show the result of time-series segmentation snr.to_dynamics(name="Baseline").detect(); # Perform simulation with estimated ODE parameter values snr.simulate(name="Baseline"); # Predict ODE parameter values (30 days from the last date of actual records) snr.build_with_template(name="Predicted", template="Baseline"); snr.predict(days=30, name="Predicted"); # Perform simulation with estimated and predicted ODE parameter values snr.simulate(name="Predicted"); # Add a future phase to the baseline (ODE parameters will not be changed) snr.append(); # Show created phases and ODE parameter values snr.summary() # Compare reproduction number of scenarios (predicted/baseline) snr.compare_param("Rt"); # Compare simulated number of cases snr.compare_cases("Confirmed"); # Describe representative values snr.describe() ``` Output of `snr.simulate(name="Predicted");` <img src="https://raw.githubusercontent.com/lisphilar/covid19-sir/master/example/output/demo_jpn/04_predicted.png" width="600"> ## Tutorial Tutorials of functionalities are included in the [CovsirPhy documentation](https://lisphilar.github.io/covid19-sir/index.html). * [Data preparation](https://lisphilar.github.io/covid19-sir/01_data_preparation.html) * [Data Engineering](https://lisphilar.github.io/covid19-sir/02_data_engineering.html) * [SIR-derived ODE models](https://lisphilar.github.io/covid19-sir/03_ode.html) * [Phase-dependent SIR models](https://lisphilar.github.io/covid19-sir/04_phase_dependent.html) * [Scenario analysis](https://lisphilar.github.io/covid19-sir/05_scenario_analysis.html) * [ODE parameter prediction](https://lisphilar.github.io/covid19-sir/06_prediction.html) ## Release notes Release notes are [here](https://github.com/lisphilar/covid19-sir/releases). Titles & links of issues are listed with acknowledgement. We can see the release plan for the next stable version in [milestone page of the GitHub repository](https://github.com/lisphilar/covid19-sir/milestones). If you find a highly urgent matter, please let us know via [issue page](https://github.com/lisphilar/covid19-sir/issues). ## Developers CovsirPhy library is developed by a community of volunteers. Please see the full list [here](https://github.com/lisphilar/covid19-sir/graphs/contributors). This project started in Kaggle platform. Hirokazu Takaya ([@lisphilar](<https://www.kaggle.com/lisphilar>)) published [Kaggle Notebook: COVID-19 data with SIR model](https://www.kaggle.com/lisphilar/covid-19-data-with-sir-model) on 12Feb2020 and developed it, discussing with Kaggle community. On 07May2020, "covid19-sir" repository was created. On 10May2020, `covsirphy` version 1.0.0 was published in GitHub. First release in PyPI (version 2.3.0) was on 28Jun2020. ## Support Please support this project as a developer (or a backer). [![Become a backer](https://opencollective.com/covsirphy/tiers/backer.svg?avatarHeight=36&width=600)](https://opencollective.com/covsirphy) ## License: Apache License 2.0 Please refer to [LICENSE](https://github.com/lisphilar/covid19-sir/blob/master/LICENSE) file. ## Citation Please cite this library as follows with version number (`import covsirphy as cs; cs.__version__`). **Hirokazu Takaya and CovsirPhy Development Team (2020-2022), CovsirPhy version [version number]: Python library for COVID-19 analysis with phase-dependent SIR-derived ODE models, [https://github.com/lisphilar/covid19-sir](https://github.com/lisphilar/covid19-sir)** This is the output of `covsirphy.__citation__`. ```Python import covsirphy as cs cs.__citation__ ``` **We have no original papers the author and contributors wrote, but note that some scientific approaches, including SIR-F model, S-R change point analysis, phase-dependent approach to SIR-derived models, were developed in this project.**


نیازمندی

مقدار نام
>=1.23.3,<2.0.0 numpy
>=3.0.1,<4.0.0 optuna
>=1.5.0,<2.0.0 pandas
>=9.0.0,<10.0.0 pyarrow
>=0.8.10,<0.10.0 tabulate
>=0.12.0,<0.13.0 seaborn
>=1.8.1 scipy
>=1.1.2,<2.0.0 scikit-learn
>=0.0.21,<0.0.25 japanmap
>=2.28.1,<3.0.0 requests
>=1.1.7,<2.0.0 ruptures
>=3.6.0,<4.0.0 matplotlib
>=0.7.7,<0.8.0 country-converter
>=0.3.0,<0.4.0 wbdata
>=0.11.1,<0.12.0 geopandas
>=1.3.4,<2.0.0 Unidecode
>=3.3.2,<4.0.0 lightgbm
>=0.5.0,<0.6.0 AutoTS
>=1.4.0,<2.0.0 p-tqdm
>=1.8.3,<2.0.0 pca
>=0.3.3,<0.4.0 better-exceptions
>=0.6.0,<0.7.0 loguru


زبان مورد نیاز

مقدار نام
>=3.8,<3.11 Python


نحوه نصب


نصب پکیج whl covsirphy-2.9.1:

    pip install covsirphy-2.9.1.whl


نصب پکیج tar.gz covsirphy-2.9.1:

    pip install covsirphy-2.9.1.tar.gz