معرفی شرکت ها


covid19dh-2.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Unified data hub for a better understanding of COVID-19 https://covid19datahub.io
ویژگی مقدار
سیستم عامل -
نام فایل covid19dh-2.3.0
نام covid19dh
نسخه کتابخانه 2.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Martin Beneš
ایمیل نویسنده martinbenes1996@gmail.com
آدرس صفحه اصلی https://www.covid19datahub.io
آدرس اینترنتی https://pypi.org/project/covid19dh/
مجوز -
<a href="https://covid19datahub.io"><img src="https://storage.covid19datahub.io/logo.svg" align="right" height="128"/></a> # Python Interface to COVID-19 Data Hub [![](https://img.shields.io/pypi/v/covid19dh.svg?color=brightgreen)](https://pypi.org/pypi/covid19dh/) [![](https://img.shields.io/pypi/dm/covid19dh.svg?color=blue)](https://pypi.org/pypi/covid19dh/) [![DOI](https://joss.theoj.org/papers/10.21105/joss.02376/status.svg)](https://doi.org/10.21105/joss.02376) [![](https://github.com/covid19datahub/Python/workflows/utests_on_commit/badge.svg)](https://github.com/covid19datahub/Python) Download COVID-19 data across governmental sources at national, regional, and city level, as described in [Guidotti and Ardia (2020)](https://www.doi.org/10.21105/joss.02376). Includes the time series of vaccines, tests, cases, deaths, recovered, hospitalizations, intensive therapy, and policy measures by [Oxford COVID-19 Government Response Tracker](https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker). Please agree to the [Terms of Use](https://covid19datahub.io/LICENSE.html) and cite the following reference when using it: **Reference** Guidotti, E., Ardia, D., (2020). COVID-19 Data Hub _Journal of Open Source Software_, **5**(51):2376 [https://doi.org/10.21105/joss.02376](https://doi.org/10.21105/joss.02376) ## Setup and usage Install from [pip](https://pypi.org/project/covid19dh/) with ```python pip install covid19dh ``` Importing the main function `covid19()` ```python from covid19dh import covid19 x, src = covid19() ``` Package is regularly updated. Update with ```bash pip install --upgrade covid19dh ``` ## Return values The function `covid19()` returns 2 pandas dataframes: * the data and * references to the data sources. ## Parametrization ### Country List of country names (case-insensitive) or ISO codes (alpha-2, alpha-3 or numeric). The list of ISO codes can be found [here](https://github.com/covid19datahub/COVID19/blob/master/inst/extdata/db/ISO.csv). Fetching data from a particular country: ```python x, src = covid19("USA") # Unites States ``` Specify multiple countries at the same time: ```python x, src = covid19(["ESP","PT","andorra",250]) ``` If `country` is omitted, the whole dataset is returned: ```python x, src = covid19() ``` ### Raw data Logical. Skip data cleaning? Default `True`. If `raw=False`, the raw data are cleaned by filling missing dates with `NaN` values. This ensures that all locations share the same grid of dates and no single day is skipped. Then, `NaN` values are replaced with the previous non-`NaN` value or `0`. ```python x, src = covid19(raw = False) ``` ### Date filter Date can be specified with `datetime.datetime`, `datetime.date` or as a `str` in format `YYYY-mm-dd`. ```python from datetime import datetime x, src = covid19("SWE", start = datetime(2020,4,1), end = "2020-05-01") ``` ### Level Integer. Granularity level of the data: 1. Country level 2. State, region or canton level 3. City or municipality level ```python from datetime import date x, src = covid19("USA", level = 2, start = date(2020,5,1)) ``` ### Cache Logical. Memory caching? Significantly improves performance on successive calls. By default, using the cached data is enabled. Caching can be disabled (e.g. for long running programs) by: ```python x, src = covid19("FRA", cache = False) ``` ### Vintage Logical. Retrieve the snapshot of the dataset that was generated at the `end` date instead of using the latest version. Default `False`. To fetch e.g. US data that were accessible on *22th April 2020* type ```python x, src = covid19("USA", end = "2020-04-22", vintage = True) ``` The vintage data are collected at the end of the day, but published with approximately 48 hour delay, once the day is completed in all the timezones. Hence if `vintage = True`, but `end` is not set, warning is raised and `None` is returned. ```python x, src = covid19("USA", vintage = True) # too early to get today's vintage ``` ``` UserWarning: vintage data not available yet ``` ### Data Sources The data sources are returned as second value. ```python from covid19dh import covid19 x, src = covid19("USA") print(src) ``` ### Additional information Find out more at https://covid19datahub.io ## Acknowledgements Developed and maintained by [Martin Benes](https://pypi.org/user/martinbenes1996/). ## Cite as *Guidotti, E., Ardia, D., (2020), "COVID-19 Data Hub", Journal of Open Source Software 5(51):2376, doi: 10.21105/joss.02376.* A BibTeX entry for LaTeX users is ```latex @Article{, title = {COVID-19 Data Hub}, year = {2020}, doi = {10.21105/joss.02376}, author = {Emanuele Guidotti and David Ardia}, journal = {Journal of Open Source Software}, volume = {5}, number = {51}, pages = {2376} } ```


نیازمندی

مقدار نام
- pandas
- requests


نحوه نصب


نصب پکیج whl covid19dh-2.3.0:

    pip install covid19dh-2.3.0.whl


نصب پکیج tar.gz covid19dh-2.3.0:

    pip install covid19dh-2.3.0.tar.gz