معرفی شرکت ها


covid-spike-classification-0.6.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Detect interesting SARS-CoV-2 spike protein variants from Sanger sequencing data.
ویژگی مقدار
سیستم عامل -
نام فایل covid-spike-classification-0.6.4
نام covid-spike-classification
نسخه کتابخانه 0.6.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kai Blin
ایمیل نویسنده kblin@biosustain.dtu.dk
آدرس صفحه اصلی https://github.com/kblin/covid-spike-classification/
آدرس اینترنتی https://pypi.org/project/covid-spike-classification/
مجوز Apache Software License
# Detect interesting SARS-CoV-2 spike protein mutations from Sanger sequencing data [![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/covid-spike-classification/README.html) [![Docker Cloud Build Status](https://img.shields.io/docker/cloud/build/kblin/covid-spike-classification?style=flat)](https://hub.docker.com/r/kblin/covid-spike-classification) `covid-spike-classification` is a script to call interesting SARS-CoV-2 spike protein mutations from Sanger sequencing to support the Danish COVID-19 monitoring efforts. Using Sanger-sequenced RT-PCR product of the spike protein, this tool should pick up all relevant mutations currently tracked (see [`covid_spike_classification/core.py`](https://github.com/kblin/covid-spike-classification/blob/main/covid_spike_classification/core.py#L15-L35) for the full list of tracked mutations) and give a table with one row per sample and a yes/no/failed column per tracked mutation. This workflow is built and maintained at https://github.com/kblin/covid-spike-classification If you found this tool useful, please cite https://www.medrxiv.org/content/10.1101/2021.03.27.21252266v1 ## Installation `covid-spike-classification` is distributed via this git repository, pypi or bioconda. ### Bioconda Installing via bioconda is the fastest way to get up and running: ```sh conda create -n csc -c conda-forge -c bioconda covid-spike-classification conda activate csc ``` ### git & pypi When installing via git or pypi, you first need to install the external binary dependencies. `covid-spike-classification` depends on three excellent tools to do most of the work: * tracy (versions 0.5.3 & 0.5.7 tested) * bowtie2 (version 2.4.2 tested) * samtools (versions 1.10 & 1.11 tested) If you have `conda` installed, the easiest way to get started is to just install these via calling ```sh git clone https://github.com/kblin/covid-spike-classification.git cd covid-spike-classification conda env create -n csc -f environment.yml conda activate csc pip install . ``` ### Docker, Podman, Singularity While not technically an installation method, `covid-spike-classification` is also shipped as an OCI container. To use it, you ideally run the container from a workflow management system like [Snakemake](https://snakemake.github.io/) or [Nextflow](https://www.nextflow.io/) that will take care of mounting filesystems into the container for you. The OCI container image is available from the Docker Hub [`kblin/covid-spike-classification`](https://hub.docker.com/r/kblin/covid-spike-classification) repository. ## Setup You also need to generate the samtools and bowtie2 indices for your reference genome. We ship a copy of NC\_045512 and a script to generate these indices: ```sh conda activate csc cd ref ./build_indices.sh cd .. ``` ## Usage Assuming you used above instructions to install via conda, you can run the tool like this: ```sh conda activate csc covid-spike-classification --reference /path/to/your/reference.fasta --outdir /path/to/result/dir /path/to/sanger/reads/dir_or.zip ``` Notably, you can provide the input either as a ZIP file or as a directory, as long as they directly contain the ab1 files you want to run the analysis on. See also the `--help` output for more detailed usage information. ## License All code is available under the Apache License version 2, see the [`LICENSE`](LICENSE) file for details.


نیازمندی

مقدار نام
- biopython
- flake8
- pytest


نحوه نصب


نصب پکیج whl covid-spike-classification-0.6.4:

    pip install covid-spike-classification-0.6.4.whl


نصب پکیج tar.gz covid-spike-classification-0.6.4:

    pip install covid-spike-classification-0.6.4.tar.gz