معرفی شرکت ها


covalent-ec2-plugin-0.9.0rc0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Covalent EC2 Plugin
ویژگی مقدار
سیستم عامل -
نام فایل covalent-ec2-plugin-0.9.0rc0
نام covalent-ec2-plugin
نسخه کتابخانه 0.9.0rc0
نگهدارنده ['Agnostiq']
ایمیل نگهدارنده []
نویسنده Agnostiq
ایمیل نویسنده support@agnostiq.ai
آدرس صفحه اصلی https://github.com/AgnostiqHQ/covalent-ec2-plugin
آدرس اینترنتی https://pypi.org/project/covalent-ec2-plugin/
مجوز GNU Affero GPL v3.0
&nbsp; <div align="center"> <img src="https://github.com/AgnostiqHQ/covalent-ec2-plugin/blob/main/assets/ec2_readme_banner.jpg" width=150%> </div> ## Covalent EC2 Executor Plugin Covalent is a Pythonic workflow tool used to execute tasks on advanced computing hardware. This plugin allows tasks to be executed in an AWS EC2 instance (which is auto-created) when you execute your workflow with covalent. ## 1. Installation To use this plugin with Covalent, simply install it using `pip`: ``` pip install covalent-ec2-plugin ``` ## 2. Usage Example This is a toy example of how a workflow can be adapted to utilize the EC2 Executor. Here we train a Support Vector Machine (SVM) and spin up an EC2 automatically to execute the `train_svm` electron. We also note we require [DepsPip](https://covalent.readthedocs.io/en/latest/concepts/concepts.html#depspip) to install the dependencies on the EC2 instance. ```python from numpy.random import permutation from sklearn import svm, datasets import covalent as ct deps_pip = ct.DepsPip( packages=["numpy==1.23.2", "scikit-learn==1.1.2"] ) executor = ct.executor.EC2Executor( instance_type="t2.micro", volume_size=8, #GiB ssh_key_file="~/.ssh/id_rsa", key_name="key_name" # EC2 Key Pair ) # Use executor plugin to train our SVM model. @ct.electron( executor=executor, deps_pip=deps_pip ) def train_svm(data, C, gamma): X, y = data clf = svm.SVC(C=C, gamma=gamma) clf.fit(X[90:], y[90:]) return clf @ct.electron def load_data(): iris = datasets.load_iris() perm = permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] return iris.data, iris.target @ct.electron def score_svm(data, clf): X_test, y_test = data return clf.score( X_test[:90], y_test[:90] ) @ct.lattice def run_experiment(C=1.0, gamma=0.7): data = load_data() clf = train_svm( data=data, C=C, gamma=gamma ) score = score_svm( data=data, clf=clf ) return score # Dispatch the workflow dispatch_id = ct.dispatch(run_experiment)( C=1.0, gamma=0.7 ) # Wait for our result and get result value result = ct.get_result(dispatch_id=dispatch_id, wait=True).result print(result) ``` During the execution of the workflow one can navigate to the UI to see the status of the workflow, once completed however the above script should also output a value with the score of our model. ``` 0.8666666666666667 ``` ## 3. Configuration There are many configuration options that can be passed in to the class `ct.executor.EC2Executor` or by modifying the [covalent config file](https://covalent.readthedocs.io/en/latest/how_to/config/customization.html) under the section `[executors.ec2]` For more information about all of the possible configuration values visit our [read the docs (RTD) guide](https://covalent.readthedocs.io/en/latest/api/executors/awsec2.html) for this plugin. ## 4. Required AWS Resources In order to run your workflows with covalent there are a few notable resources that need to be provisioned first. For more information regarding which cloud resources need to be provisioned visit our [read the docs (RTD) guide](https://covalent.readthedocs.io/en/latest/api/executors/awsec2.html) for this plugin. The required resources include an EC2 Key Pair (which corresponds to the `key_name` config value), and optionally a VPC & Subnet that can be used instead of the EC2 executor automatically creating it. ## Getting Started with Covalent For more information on how to get started with Covalent, check out the project [homepage](https://github.com/AgnostiqHQ/covalent) and the official [documentation](https://covalent.readthedocs.io/en/latest/). ## Release Notes Release notes for this plugin are available in the [Changelog](https://github.com/AgnostiqHQ/covalent-ec2-plugin/blob/main/CHANGELOG.md). ## Citation Please use the following citation in any publications: > W. J. Cunningham, S. K. Radha, F. Hasan, J. Kanem, S. W. Neagle, and S. Sanand. > *Covalent.* Zenodo, 2022. https://doi.org/10.5281/zenodo.5903364 ## License Covalent is licensed under the GNU Affero GPL 3.0 License. Covalent may be distributed under other licenses upon request. See the [LICENSE](https://github.com/AgnostiqHQ/covalent-executor-template/blob/main/LICENSE) file or contact the [support team](mailto:support@agnostiq.ai) for more details.


نحوه نصب


نصب پکیج whl covalent-ec2-plugin-0.9.0rc0:

    pip install covalent-ec2-plugin-0.9.0rc0.whl


نصب پکیج tar.gz covalent-ec2-plugin-0.9.0rc0:

    pip install covalent-ec2-plugin-0.9.0rc0.tar.gz