معرفی شرکت ها


covalent-awslambda-plugin-0.9.0rc0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Covalent AWS Lambda Executor Plugin
ویژگی مقدار
سیستم عامل -
نام فایل covalent-awslambda-plugin-0.9.0rc0
نام covalent-awslambda-plugin
نسخه کتابخانه 0.9.0rc0
نگهدارنده ['Agnostiq']
ایمیل نگهدارنده []
نویسنده Agnostiq
ایمیل نویسنده support@agnostiq.ai
آدرس صفحه اصلی https://github.com/AgnostiqHQ/covalent-awslambda-plugin
آدرس اینترنتی https://pypi.org/project/covalent-awslambda-plugin/
مجوز GNU Affero GPL v3.0
&nbsp; <div align="center"> <img src="./assets/aws_lambda_readme_banner.jpg" width=150%> [![covalent](https://img.shields.io/badge/covalent-0.177.0-purple)](https://github.com/AgnostiqHQ/covalent) [![python](https://img.shields.io/pypi/pyversions/covalent-awslambda-plugin)](https://github.com/AgnostiqHQ/covalent-awslambda-plugin) [![tests](https://github.com/AgnostiqHQ/covalent-awslambda-plugin/actions/workflows/tests.yml/badge.svg)](https://github.com/AgnostiqHQ/covalent-awslambda-plugin/actions/workflows/tests.yml) [![codecov](https://codecov.io/gh/AgnostiqHQ/covalent-awslambda-plugin/branch/main/graph/badge.svg?token=QNTR18SR5H)](https://codecov.io/gh/AgnostiqHQ/covalent-awslambda-plugin) [![agpl](https://img.shields.io/badge/License-AGPL_v3-blue.svg)](https://www.gnu.org/licenses/agpl-3.0.en.html) </div> ## Covalent AWS Lambda Plugin Covalent is a Pythonic workflow tool used to execute tasks on advanced computing hardware. This executor plugin interfaces Covalent with [AWS Lambda](https://aws.amazon.com/lambda/) for dispatching computational tasks. ## 1. Installation To use this plugin with Covalent, install it using `pip`: ```sh pip install covalent-awslambda-plugin ``` ## 2. Usage Example This is an example of how a workflow can be constructed to use the AWS Lambda executor. In the example, we train a Support Vector Machine (SVM) and use an instance of the executor to execute the `train_svm` electron. Note that we also require [DepsPip](https://covalent.readthedocs.io/en/latest/concepts/concepts.html#depspip) which will be required to execute the electrons. The `AWSLambdaExecutor` requires a container based AWS lambda function to already have been created in the user's AWS account with its `Container image URI` configured properly. Users can use Covalent's public Lambda executor registry i.e. `public.ecr.aws/covalent/covalent-lambda-executor:stable` when creating their Lambda functions. This public ECR registry holds the base container image the lambda function can use to execute tasks from a workflow. User's can pass in the name of their Lambda function to the constructor using the `function_name` argument. See our [documentation](https://covalent.readthedocs.io/en/latest/api/executors/awslambda.html) for more details. ```python from numpy.random import permutation from sklearn import svm, datasets import covalent as ct deps_pip = ct.DepsPip( packages=["numpy==1.23.2", "scikit-learn==1.1.2"] ) executor = ct.executor.AWSLambdaExecutor( function_name="my-lambda-function", s3_bucket_name="covalent-lambda-job-resources", ) # Use executor plugin to train our SVM model. @ct.electron( executor=executor, deps_pip=deps_pip ) def train_svm(data, C, gamma): X, y = data clf = svm.SVC(C=C, gamma=gamma) clf.fit(X[90:], y[90:]) return clf @ct.electron def load_data(): iris = datasets.load_iris() perm = permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] return iris.data, iris.target @ct.electron def score_svm(data, clf): X_test, y_test = data return clf.score( X_test[:90], y_test[:90] ) @ct.lattice def run_experiment(C=1.0, gamma=0.7): data = load_data() clf = train_svm( data=data, C=C, gamma=gamma ) score = score_svm( data=data, clf=clf ) return score # Dispatch the workflow. dispatch_id = ct.dispatch(run_experiment)( C=1.0, gamma=0.7 ) # Wait for our result and get result value result = ct.get_result(dispatch_id, wait=True).result print(result) ``` During the execution of the workflow, one can navigate to the UI to see the status of the workflow. Once completed, the above script should also output a value with the score of our model. ```sh 0.8666666666666667 ``` In order for the above workflow to run successfully, one has to provision the required cloud resources as mentioned in the section [Required AWS Resources](#-required-aws-resources). ## 3. Configuration There are many configuration options that can be passed into the `ct.executor.AWSLambdaExecutor` class or by modifying the [covalent config file](https://covalent.readthedocs.io/en/latest/how_to/config/customization.html) under the section `[executors.awslambda]` For more information about all of the possible configuration values, visit our [read the docs (RTD) guide](https://covalent.readthedocs.io/en/latest/api/executors/awslambda.html) for this plugin. ## 4. Required AWS Resources In order for workflows to leverage this executor, users must ensure that all the necessary IAM permissions are properly setup and configured. This executor uses the [S3](https://aws.amazon.com/s3/) and [AWS Lambda](https://aws.amazon.com/lambda/) services to execute an electron, thus the required IAM roles and policies must be configured correctly. Precisely, the following resources are needed for the executor to run any dispatched electrons properly. | Resource | Config Name | Description | | ------------ | ---------------- | ----------- | | IAM Role | lambda_role_name | The IAM role this lambda will assume during execution of your tasks | | S3 Bucket | s3_bucket_name | The name of the S3 bucket that the executor can use to store temporary files | | AWS Lambda | function_name | Name of the pre-configured AWS Lambda function use to run tasks For exact details on how the above resources can be provisioned, visit our [read the docs (RTD) guide](https://covalent.readthedocs.io/en/latest/api/executors/awslambda.html) for this plugin. ## Getting Started with Covalent For more information on how to get started with Covalent, check out the project [homepage](https://github.com/AgnostiqHQ/covalent) and the official [documentation](https://covalent.readthedocs.io/en/latest/). ## Release Notes Release notes are available in the [Changelog](https://github.com/AgnostiqHQ/covalent-awslambda-plugin/blob/main/CHANGELOG.md). ## Citation Please use the following citation in any publications: > W. J. Cunningham, S. K. Radha, F. Hasan, J. Kanem, S. W. Neagle, and S. Sanand. > *Covalent.* Zenodo, 2022. https://doi.org/10.5281/zenodo.5903364 ## License Covalent is licensed under the GNU Affero GPL 3.0 License. Covalent may be distributed under other licenses upon request. See the [LICENSE](https://github.com/AgnostiqHQ/covalent-awslambda-plugin/blob/main/LICENSE) file or contact the [support team](mailto:support@agnostiq.ai) for more details.


نحوه نصب


نصب پکیج whl covalent-awslambda-plugin-0.9.0rc0:

    pip install covalent-awslambda-plugin-0.9.0rc0.whl


نصب پکیج tar.gz covalent-awslambda-plugin-0.9.0rc0:

    pip install covalent-awslambda-plugin-0.9.0rc0.tar.gz