معرفی شرکت ها


counterfactuals-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A solver for Counterfactual Inference.
ویژگی مقدار
سیستم عامل -
نام فایل counterfactuals-1.0.0
نام counterfactuals
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده R. Kiesel
ایمیل نویسنده rafael.kiesel@tuwien.ac.at
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/counterfactuals/
مجوز MIT
# WhatIf A solver for counterfactual inference over probabilistic logic programs. `WhatIf` based on the [aspmc](https://github.com/raki123/aspmc/) library for probabilistic logic programming inference. Its main functionality is the translation of counterfactual queries to marginal queries. For usage on Linux you may install this software as a pip package via ``` pip install counterfactuals ``` Examples for command line usage are available below. If you have any issues please contact us, or even better create an issue on GitHub. For academic usage cite * Kiesel, R., Rückschloß, K., & Weitkämper, F. (2023, July). "What if?" in Probabilistic Logic Programming. In Proceedings of the 39th International Conference on Logic Programming. ## Development setup For developement clone via ``` git clone git@github.com:raki123/counterfactuals.git ``` We require Python >= 3.6. All required modules are listed in `requirements.txt` and can be obtained by running ``` pip install -r requirements.txt ``` To use `WhatIf` as usual but have changes to the code available run ``` pip install -e . ``` in the root directory of this repository. ## Usage The basic usage is ``` WhatIf [-e .] [-ds .] [-dt .] [-k .] [-v .] [-h] [<INPUT-FILES>] --knowlege -k COMPILER set the knowledge compiler to COMPILER: * sharpsat-td : uses a compilation version of sharpsat-td (default) * d4 : uses the (slightly modified) d4 compiler. * c2d : uses the c2d compiler. * miniC2D : uses the miniC2D compiler. * pysdd : uses the PySDD compiler. --evidence -e NAME,PHASE add evidence NAME: * the evidence is negated if PHASE is `True`. * the evidence is not negated if PHASE is `False`. --intervene -i NAME,PHASE intervene on NAME: * the intervention is negative if PHASE is `True`. * the intervention is not negative if PHASE is `False`. --query -q NAME query for the probability of NAME. --decos -ds SOLVER set the solver that computes tree decompositions to SOLVER: * flow-cutter : uses flow_cutter_pace17 (default) --decot -dt SECONDS set the timeout for computing tree decompositions to SECONDS (default: 1) --verbosity -v VERBOSITY set the logging level to VERBOSITY: * debug : print everything * info : print as usual * result : only print results, warnings and errors * warning : only print warnings and errors * errors : only print errors --help -h print this help and exit ``` ### Examples When using the pip package replace `python main.py` by `WhatIf` to obtain the same result. #### ASP example: ``` python main.py -q slippery -e sprinkler,False -i sprinkler,True -k sharpsat-td 0.5::u1. 0.7::u2. 0.1::u3. 0.6::u4. szn_spr_sum :- u1. sprinkler :- szn_spr_sum, u2. rain :- szn_spr_sum, u3. rain :- \+szn_spr_sum, u4. wet :- rain. wet :- sprinkler. slippery :- wet. ``` Reads the sprinkler program from stdin and adds evidence `sprinkler` and intervention `\+sprinkler`. The query is for `slippery`. This results in the output ``` [WARNING] aspmc: Query for atom true was proven true during grounding. [WARNING] aspmc: Including it has a negative impact on performance. [INFO] aspmc: Tree Decomposition #bags: 18 unfolded treewidth: 3 #vertices: 20 [INFO] aspmc: Preprocessing disabled [INFO] aspmc: Stats Compilation [INFO] aspmc: ------------------------------------------------------------ [INFO] aspmc: Compilation time: 0.005887508392333984 [INFO] aspmc: Counting time: 0.0001952648162841797 [INFO] aspmc: ------------------------------------------------------------ [INFO] WhatIf: Results [INFO] WhatIf: ------------------------------------------------------------ [RESULT] WhatIf: slippery: 0.09999999999999999 ``` telling us that the result of the counterfactual query for `slippery` is `0.1`. The first two lines are a warning from `aspmc` that tell us that the atom `true` that we included to compute the probability of the evidence may lead to decreased performance. However, we need to include it as its probability is not `1.0` in general. The following info lines tell us some stats about the program and the inference: * it has a treewidth upper bound of 3 * aspmc's preprocessing is disabled * knowledge compilation took ~0.006 seconds * counting over the resulting circuit took ~0.0002 seconds


نیازمندی

مقدار نام
- aspmc
- PySDD


زبان مورد نیاز

مقدار نام
>=3.6, <4 Python


نحوه نصب


نصب پکیج whl counterfactuals-1.0.0:

    pip install counterfactuals-1.0.0.whl


نصب پکیج tar.gz counterfactuals-1.0.0:

    pip install counterfactuals-1.0.0.tar.gz