معرفی شرکت ها


corintick-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Column-based datastore for historical timeseries
ویژگی مقدار
سیستم عامل -
نام فایل corintick-0.2.0
نام corintick
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Gustavo Bezerra
ایمیل نویسنده gusutabopb@gmail.com
آدرس صفحه اصلی https://github.com/plugaai/corintick
آدرس اینترنتی https://pypi.org/project/corintick/
مجوز GPL
corintick ========= Column-based datastore for historical timeseries data. Corintick is designed mainly to store `pandas <http://pandas.pydata.org/>`__ DataFrames that represent timeseries. Instalation ----------- In order to use Corintick you need MongoDB. See installation instructions `here <https://docs.mongodb.com/manual/installation/>`__. Corintick itself can be installed with ``pip``: .. code:: bash $ pip install corintick Quickstart ---------- Initialize Corintick: .. code:: python from corintick import Corintick corin = Corintick() Now we need a DataFrame to insert into Corintick. For demonstration purposes, we will get data from `Quandl <https://www.quandl.com/>`__: .. code:: python import quandl df1 = quandl.get('TSE/7203') Here, ``df1`` looks like this: .. code:: text Open High Low Close Volume Date 2012-08-23 3240.0 3270.0 3220.0 3260.0 4652200.0 2012-08-24 3225.0 3245.0 3210.0 3235.0 3659600.0 2012-08-27 3250.0 3280.0 3215.0 3220.0 3614600.0 2012-08-28 3235.0 3260.0 3150.0 3180.0 6759100.0 2012-08-29 3180.0 3195.0 3160.0 3175.0 2614800.0 2012-08-30 3180.0 3190.0 3160.0 3170.0 3291700.0 2012-08-31 3135.0 3155.0 3095.0 3095.0 5663800.0 ... Writing ^^^^^^^ Inserting ``df1`` into Corintick is simple: .. code:: python corin.write('7203.T', df1, source='Quandl', country='Japan') The first argument passed to ``corintick.write`` is an UID (universal identifier) and must be unique for each timeseries inserted in a given collection. The second argument is the dataframe to be inserted. The remaining keyword arguments are optional metadata tags that can be attached to the dataframe/document for querying. Reading ^^^^^^^ Reading from Corintick is also straightforward: .. code:: python df2 = corin.read('7203.T') You can also specify ``start`` and ``end`` as ISO-8601 datetime string... .. code:: python df2 = corin.read('7203.T', start='2014-01-01', end='2014-12-31') .. code:: text Open High Low Close Volume 2014-01-06 6360.0 6400.0 6280.0 6300.0 12249300.0 2014-01-07 6270.0 6340.0 6260.0 6270.0 7891400.0 2014-01-08 6310.0 6320.0 6260.0 6300.0 7184100.0 2014-01-09 6310.0 6340.0 6260.0 6270.0 8653000.0 2014-01-10 6260.0 6310.0 6250.0 6290.0 7815900.0 ... 2014-12-24 7645.0 7687.0 7639.0 7657.0 9287900.0 2014-12-25 7600.0 7655.0 7597.0 7611.0 5362700.0 2014-12-26 7629.0 7700.0 7615.0 7696.0 6069100.0 2014-12-29 7740.0 7746.0 7565.0 7662.0 9942800.0 2014-12-30 7652.0 7674.0 7558.0 7558.0 7821200.0 ...and which columns you want retrieved: .. code:: python df2 = corin.read('7203.T', columns=['Close', 'Volume'], start='2017-05-10') .. code:: text Close Volume 2017-05-10 6081.0 7823700.0 2017-05-11 6123.0 13511900.0 2017-05-12 6047.0 8216600.0 2017-05-15 6009.0 5925200.0 2017-05-16 6093.0 6449300.0 ... Configuration ^^^^^^^^^^^^^ By default, Corintick tries to use a MongoDB instance running at ``localhost:27017``. This can be changed through the ``host`` and ``port`` arguments of the ``Corintick`` initializer. Similarly, the database to be used by Corintick defaults to ``corintick`` and can also be changed using the ``db`` parameter. All the data in the ``db`` database is assumed to be Corintick data. Avoid having any other process/application reading/writing data to that database. In case your MongoDB setup requires authentication, you can use the ``username`` and ``password`` arguments. See ``Corintick.__init__`` for details. Collections ----------- Corintick can use multiple collections to better organize data. A Corintick collection is the same as a MongoDB collection. In each collection, only a single dataframe/document can exist for a given UID for a given time period. In case you need to store two different types of data for a same UID over an overlapping time frame (i.e. trade data and order book data for a given stock), you should separate the two different types of data into different collections. By default, data is written to the ``corintick`` collection. This default collection can be changed by assigning a string to ``Corintick.default_collection``. .. code:: python >>> corin.collection = 'another_collection' Collections can also be specified on a method call basis: .. code:: python df = corin.read('7203.T', collection='orderbook') .. code:: python corin.write(df, collection='another_collection') Corintick mechanics ------------------- During writing, Corintick does the following: 1) Takes the input DataFrame and splits into columns 2) Serializes/compresses each using the LZ4 compression algorithm 3) Generates a MongoDB document containing the binary blobs corresponding to each column and other metadata During reading, the opposite takes places: 1) Documents are fetched 2) Data is decompressed and converted back to numpy arrays 3) DataFrame is reconstructed and returned to the user Background ---------- Corintick was inspired by and aims to be a simplified version of Man AHL’s `Arctic <https://github.com/manahl/arctic>`__. Differences from Arctic ^^^^^^^^^^^^^^^^^^^^^^^ Corintick has a single storage engine, which is column-based and not versioned, similar to Arctic’s TickStore. However, differently from TickStore, it does support non-numerical ``object`` dtype columns by parsing them into MessagePack string objects Naming ^^^^^^ Corintick aimed from the beginning to be a column-based data storage. "Corintick" is a blend of “Corinthan” (style of Roman columns) and "tick". Benchmarks ---------- **TODO** - **vs InfluxDB** - **vs vanila MongoDB** - **vs MySQL** - **vs KDB+ (32-bit)** Contributing ------------ | To contribute, fork the repository on GitHub, make your changes and submit a pull request. | Corintick is not a mature project yet, so just simply raising issues is also greatly appreciated :)


نیازمندی

مقدار نام
>=1.0.0 lz4
>=0.23 pandas
>=3.6 pymongo
- numpy
- pytz
- msgpack-python
xtr pytest;
xtr pytest-cov;
xtr flake8;


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl corintick-0.2.0:

    pip install corintick-0.2.0.whl


نصب پکیج tar.gz corintick-0.2.0:

    pip install corintick-0.2.0.tar.gz