معرفی شرکت ها


corenlp-python-3.4.1-1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Stanford Core NLP wrapper
ویژگی مقدار
سیستم عامل -
نام فایل corenlp-python-3.4.1-1
نام corenlp-python
نسخه کتابخانه 3.4.1-1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hiroyoshi Komatsu
ایمیل نویسنده hiroyoshi.komat@gmail.com
آدرس صفحه اصلی https://bitbucket.org/torotoki/corenlp-python
آدرس اینترنتی https://pypi.org/project/corenlp-python/
مجوز UNKNOWN
# A Python wrapper for the Java Stanford Core NLP tools --------------------------- This is a fork of Dustin Smith's [stanford-corenlp-python](https://github.com/dasmith/stanford-corenlp-python), a Python interface to [Stanford CoreNLP](http://nlp.stanford.edu/software/corenlp.shtml). It can either use as a python package, or run as a JSON-RPC server. ## Updates from the original wrapper * Supports Stanford CoreNLP v3.x.x (compatible with recent versions) * Fixed many bugs & improved performance * Adjusted parameters not to timeout in high load * Using jsonrpclib for stability and performance * Batch parser for long text which supports sentiment analysis * Python 3 compatibility (thanks to Valentin Lorentz) * [Packaging](https://pypi.python.org/pypi/corenlp-python) ## Requirements * [pexpect](http://www.noah.org/wiki/pexpect) * [jsonrpclib](https://github.com/joshmarshall/jsonrpclib) (optionally) ## Download and Usage To use this program you must [download](http://nlp.stanford.edu/software/corenlp.shtml#Download) and unpack the zip file containing Stanford's CoreNLP package. By default, `corenlp.py` looks for the Stanford Core NLP folder as a subdirectory of where the script is being run. In other words: sudo pip install pexpect unidecode jsonrpclib # jsonrpclib is optional git clone https://bitbucket.org/torotoki/corenlp-python.git cd corenlp-python # assuming the version 3.4.1 of Stanford CoreNLP wget http://nlp.stanford.edu/software/stanford-corenlp-full-2014-08-27.zip unzip stanford-corenlp-full-2014-08-27.zip Then, to launch a server: python corenlp/corenlp.py Optionally, you can specify a host or port: python corenlp/corenlp.py -H 0.0.0.0 -p 3456 That will run a public JSON-RPC server on port 3456. And you can specify Stanford CoreNLP directory: python corenlp/corenlp.py -S stanford-corenlp-full-2014-08-27/ Assuming you are running on port 8080 and CoreNLP directory is `stanford-corenlp-full-2014-08-27/` in current directory, this wrapper supports recently version around of 3.4.1 which has same output format. The code in `client.py` shows an example parse: import jsonrpclib from simplejson import loads server = jsonrpclib.Server("http://localhost:8080") result = loads(server.parse("Hello world. It is so beautiful")) print "Result", result That returns a dictionary containing the keys `sentences` and (when applicable) `corefs`. The key `sentences` contains a list of dictionaries for each sentence, which contain `parsetree`, `text`, `tuples` containing the dependencies, and `words`, containing information about parts of speech, NER, etc: {u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))', u'text': u'Hello world!', u'tuples': [[u'dep', u'world', u'Hello'], [u'root', u'ROOT', u'world']], u'words': [[u'Hello', {u'CharacterOffsetBegin': u'0', u'CharacterOffsetEnd': u'5', u'Lemma': u'hello', u'NamedEntityTag': u'O', u'PartOfSpeech': u'UH'}], [u'world', {u'CharacterOffsetBegin': u'6', u'CharacterOffsetEnd': u'11', u'Lemma': u'world', u'NamedEntityTag': u'O', u'PartOfSpeech': u'NN'}], [u'!', {u'CharacterOffsetBegin': u'11', u'CharacterOffsetEnd': u'12', u'Lemma': u'!', u'NamedEntityTag': u'O', u'PartOfSpeech': u'.'}]]}, {u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))', u'text': u'It is so beautiful.', u'tuples': [[u'nsubj', u'beautiful', u'It'], [u'cop', u'beautiful', u'is'], [u'advmod', u'beautiful', u'so'], [u'root', u'ROOT', u'beautiful']], u'words': [[u'It', {u'CharacterOffsetBegin': u'14', u'CharacterOffsetEnd': u'16', u'Lemma': u'it', u'NamedEntityTag': u'O', u'PartOfSpeech': u'PRP'}], [u'is', {u'CharacterOffsetBegin': u'17', u'CharacterOffsetEnd': u'19', u'Lemma': u'be', u'NamedEntityTag': u'O', u'PartOfSpeech': u'VBZ'}], [u'so', {u'CharacterOffsetBegin': u'20', u'CharacterOffsetEnd': u'22', u'Lemma': u'so', u'NamedEntityTag': u'O', u'PartOfSpeech': u'RB'}], [u'beautiful', {u'CharacterOffsetBegin': u'23', u'CharacterOffsetEnd': u'32', u'Lemma': u'beautiful', u'NamedEntityTag': u'O', u'PartOfSpeech': u'JJ'}], [u'.', {u'CharacterOffsetBegin': u'32', u'CharacterOffsetEnd': u'33', u'Lemma': u'.', u'NamedEntityTag': u'O', u'PartOfSpeech': u'.'}]]}], u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]} Not to use JSON-RPC, load the module instead: from corenlp import StanfordCoreNLP corenlp_dir = "stanford-corenlp-full-2014-08-27/" corenlp = StanfordCoreNLP(corenlp_dir) # wait a few minutes... corenlp.raw_parse("Parse it") If you need to parse long texts (more than 30-50 sentences), you must use a `batch_parse` function. It reads text files from input directory and returns a generator object of dictionaries parsed each file results: from corenlp import batch_parse corenlp_dir = "stanford-corenlp-full-2014-08-27/" raw_text_directory = "sample_raw_text/" parsed = batch_parse(raw_text_directory, corenlp_dir) # It returns a generator object print parsed #=> [{'coref': ..., 'sentences': ..., 'file_name': 'new_sample.txt'}] The function uses XML output feature of Stanford CoreNLP, and you can take all information by `raw_output` option. If true, CoreNLP's XML is returned as a dictionary without converting the format. parsed = batch_parse(raw_text_directory, corenlp_dir, raw_output=True) (Note: The function requires xmltodict now, you should install it by `sudo pip install xmltodict`) ### Note * JSON-RPC server [halts on large text](https://bitbucket.org/torotoki/corenlp-python/issue/7/server-halts-on-large-text). it maybe because of restriction of stdout, you should use the batch parser or [an other wrapper](https://github.com/brendano/stanford_corenlp_pywrapper). * JSON-RPC server doesn't support sentiment analysis tools because original CoreNLP tools don't output sentiment results to stdout yet (batch parser's output includes sentiment results retrieved from the original CoreNLP tools's XML output) ## License corenlp-python is licensed under the GNU General Public License (v2 or later). Note that this is the /full/ GPL, which allows many free uses, but not its use in distributed proprietary software. ## Developer * Hiroyoshi Komatsu [hiroyoshi.komat@gmail.com] * Johannes Castner [jac2130@columbia.edu]


نحوه نصب


نصب پکیج whl corenlp-python-3.4.1-1:

    pip install corenlp-python-3.4.1-1.whl


نصب پکیج tar.gz corenlp-python-3.4.1-1:

    pip install corenlp-python-3.4.1-1.tar.gz