معرفی شرکت ها


corals-0.1.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

CorALS is an open-source software package for the construction and analysis of large-scale correlation networks for high-dimensional data.
ویژگی مقدار
سیستم عامل -
نام فایل corals-0.1.5
نام corals
نسخه کتابخانه 0.1.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Martin Becker
ایمیل نویسنده mgbckr@stanford.edu
آدرس صفحه اصلی https://github.com/mgbckr/corals-python
آدرس اینترنتی https://pypi.org/project/corals/
مجوز MIT
# CorALS *CorALS* is an open-source software package for the construction and analysis of large-scale correlation networks for high-dimensional data. If you use *CorALS* for a scientific publication, please cite: ```plain TO BE PUBLISHED ``` ## Install ```bash pip install corals ``` ## Quick start The following quick start examples can also be found in [an executable notebook](https://github.com/mgbckr/corals-lib-python/tree/main/docs/notebooks/quickstart.ipynb). **Note:** If any of the following examples do not work, check the [previously mentioned executable notebook](https://github.com/mgbckr/corals-lib-python/tree/main/docs/notebooks/quickstart.ipynb) as well. It is tested automatically, and this `README` may not have been updated. ### Prepare parallelization Before running anything, we make sure that `numpy` will not oversubscribe CPUs and slow things down. Note that this has to be executed **before importing `numpy`**. * For full correlation matrix calculation, setting `n_threads > 1` can be used to parallelize the calculation. * For the top-k approaches, setting `n_threads=1` makes the most sense, since parallelization is specified separately. ```python from corals.threads import set_threads_for_external_libraries set_threads_for_external_libraries(n_threads=1) ``` ### Load data Create some data (alternatively load your own): ```python import numpy as np # create random data n_features = 20000 n_samples = 50 X = np.random.random((n_samples, n_features)) ``` ### Full correlation matrix computation ```python # runtime: ~2 sec from corals.correlation.full.base import cor_full cor_values = cor_full(X) ``` ### Top-k correlation matrix computation using Spearman correlation ```python # runtime: ~5 sec with `n_jobs=8` from corals.correlation.topk.base import cor_topk cor_topk_result = cor_topk(X, k=0.001, correlation_type="spearman", n_jobs=8) ``` ### Top-k differential correlation matrix computation using Spearman correlation ```python # generate some more data X1 = X X2 = np.random.random((n_samples, n_features)) ``` ```python # runtime: ~5 sec with `n_jobs=8` from corals.correlation.topkdiff.base import cor_topkdiff cor_topkdiff_result = cor_topkdiff(X1, X2, k=0.001, correlation_type="spearman", n_jobs=8) ``` ### Calculating p-values ```python # reusing correlation from the top-k example # runtime: ~20 sec with `n_jobs=8` from corals.correlation.topk.base import cor_topk cor_topk_values, cor_topk_coo = cor_topk(X, correlation_type="spearman", k=0.001, n_jobs=8) from corals.correlation.utils import derive_pvalues, multiple_test_correction n_samples = X.shape[0] n_features = X.shape[1] # calculate p-values pvalues = derive_pvalues(cor_topk_values, n_samples) # multiple hypothesis correction pvalues_corrected = multiple_test_correction(pvalues, n_features, method="fdr_bh") ``` ## Detailed examples For detailed examples and recommendations, see the corresponding [notebook](https://github.com/mgbckr/corals-lib-python/tree/main/docs/notebooks/full.ipynb). The `docs/notebooks` folder may contain additional examples and tutorials in the form of Jupyter Notebooks. Quick setup for Jupyter notebooks. ```bash export ENV_NAME=corals conda create -n ${ENV_NAME} python=3.10 conda activate ${ENV_NAME} pip install corals conda install -c conda-forge jupyterlab # optional if Jupyter Lab is already installed conda install -c conda-forge ipykernel python -m ipykernel install --user --name ${ENV_NAME} ``` ## Development **TODO**: add documentation for contributing new code / methods ### Setup ```bash git clone git@github.com:mgbckr/corals-lib-python.git pip install -e . ``` ### Release ```bash git tag -a x.x.x -m "Release x.x.x" ```


نیازمندی

مقدار نام
>=0.52.0 numba
<2.0.0,>=1.20.3 numpy
<2.0.0,>=1.0.0 joblib
<2.0.0,>=1.6.3 scipy
<2.0.0,>=0.24.2 scikit-learn
- importlib-metadata
- setuptools
- pytest
- pytest-cov
- nbmake
- statsmodels


زبان مورد نیاز

مقدار نام
<3.11,>=3.9 Python


نحوه نصب


نصب پکیج whl corals-0.1.5:

    pip install corals-0.1.5.whl


نصب پکیج tar.gz corals-0.1.5:

    pip install corals-0.1.5.tar.gz