معرفی شرکت ها


copent-0.3.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Estimating Copula Entropy and Transfer Entropy
ویژگی مقدار
سیستم عامل -
نام فایل copent-0.3.2
نام copent
نسخه کتابخانه 0.3.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده MA Jian
ایمیل نویسنده majian03@gmail.com
آدرس صفحه اصلی https://github.com/majianthu/pycopent
آدرس اینترنتی https://pypi.org/project/copent/
مجوز GPL License
[![PyPI version](https://badge.fury.io/py/copent.svg)](https://pypi.org/project/copent) # copent Estimating Copula Entropy and Transfer Entropy #### Introduction The nonparametric methods for estimating copula entropy, transfer entropy, and the statistic for multivariate normality test are implemented. The method for estimating copula entropy composes of two simple steps: estimating empirical copula by rank statistic and estimating copula entropy with the KSG method. Copula Entropy is a mathematical concept for multivariate statistical independence measuring and testing, and proved to be equivalent to mutual information. Different from Pearson Correlation Coefficient, Copula Entropy is defined for non-linear, high-order and multivariate cases, which makes it universally applicable. Estimating copula entropy can be applied to many cases, including but not limited to variable selection and causal discovery (by estimating transfer entropy). Please refer to Ma and Sun (2011) <[doi:10.1016/S1007-0214(11)70008-6](http://www.doi.org/10.1016/S1007-0214(11)70008-6)> for more information. The nonparametric method for estimating transfer entropy composes of two steps: estimating three copula entropy and calculating transfer entropy from the estimated copula entropies. A function for conditional independence testing is also provided. Please refer to Ma (2019) <[arXiv:1910.04375](https://arxiv.org/abs/1910.04375)> for more information. The copula entropy based statistic for multivariate normality test is implemented. Please refer to Ma (2022) <[arXiv:2206.05956](https://arxiv.org/abs/2206.05956)> for more details. #### Functions * copent -- estimating copula entropy; * construct_empirical_copula -- the first step of the copent function, which estimates empirical copula for data by rank statistics; * entknn -- the second step of the copent function, which estimates copula entropy from empirical copula with kNN method; * ci -- conditional independence testing based on copula entropy * transent -- estimating transfer entropy via copula entropy * mvnt -- the copula entropy-based statistic for multivariate normality test #### Parameters * x: N * d data, N samples, d dimensions * k: kth nearest neighbour, parameter for kNN entropy estimation. default = 3 * dtype: distance type, can be 'euclidean' or 'chebychev' (for Maximum Distance) * lag: time lag. default = 1 #### Installation The package can be installed from PyPI directly: ``` pip install copent ``` The package can be installed from Github: ``` pip install git+https://github.com/majianthu/pycopent.git ``` #### Usage Examples ##### estimating copula entropy ```python from numpy.random import multivariate_normal as mnorm import copent rho = 0.6 mean1 = [0,0] cov1 = [ [1,rho],[rho,1] ] x = mnorm(mean1,cov1,200) # bivariate gaussian ce1 = copent.copent(x) # estimated copula entropy ``` ##### estimating transfer entropy ```python from copent import transent from pandas import read_csv import numpy as np url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00381/PRSA_data_2010.1.1-2014.12.31.csv" prsa2010 = read_csv(url) # index: 5(PM2.5),6(Dew Point),7(Temperature),8(Pressure),10(Cumulative Wind Speed) data = prsa2010.iloc[2200:2700,[5,8]].values te = np.zeros(24) for lag in range(1,25): te[lag-1] = transent(data[:,0],data[:,1],lag) str = "TE from pressure to PM2.5 at %d hours lag : %f" %(lag,te[lag-1]) print(str) ``` ##### multivariate normality test ```python from numpy.random import multivariate_normal as mnorm from copent import mvnt mean1 = [0,0] cov1 = [[1,0.65],[0.65,1]] data = mnorm(mean1, cov1, 500) # bivariate gaussian stat1 = mvnt(data) ``` #### References 1. Jian Ma and Zengqi Sun. Mutual information is copula entropy. Tsinghua Science & Technology, 2011, 16(1): 51-54. See also arXiv preprint arXiv:0808.0845, 2008. 2. Jian Ma. Estimating Transfer Entropy via Copula Entropy. arXiv preprint arXiv:1910.04375, 2019. 3. Jian Ma. Multivariate Normality Test with Copula Entropy. arXiv preprint arXiv:2206.05956, 2022.


نیازمندی

مقدار نام
- numpy
- scipy


زبان مورد نیاز

مقدار نام
>=2.7 Python


نحوه نصب


نصب پکیج whl copent-0.3.2:

    pip install copent-0.3.2.whl


نصب پکیج tar.gz copent-0.3.2:

    pip install copent-0.3.2.tar.gz