معرفی شرکت ها


coola-0.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A light library to check if two complex/nested objects are equal or not
ویژگی مقدار
سیستم عامل -
نام فایل coola-0.0.6
نام coola
نسخه کتابخانه 0.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Thibaut Durand
ایمیل نویسنده durand.tibo+gh@gmail.com
آدرس صفحه اصلی https://github.com/durandtibo/coola
آدرس اینترنتی https://pypi.org/project/coola/
مجوز BSD-3-Clause
# coola <p align="center"> <a href="https://github.com/durandtibo/coola/actions"> <img alt="CI" src="https://github.com/durandtibo/coola/workflows/CI/badge.svg?event=push&branch=main"> </a> <a href="https://pypi.org/project/coola/"> <img alt="PYPI version" src="https://img.shields.io/pypi/v/coola"> </a> <a href="https://pypi.org/project/coola/"> <img alt="Python" src="https://img.shields.io/pypi/pyversions/coola.svg"> </a> <a href="https://opensource.org/licenses/BSD-3-Clause"> <img alt="BSD-3-Clause" src="https://img.shields.io/pypi/l/coola"> </a> <a href="https://codecov.io/gh/durandtibo/coola"> <img alt="Codecov" src="https://codecov.io/gh/durandtibo/coola/branch/main/graph/badge.svg"> </a> <a href="https://github.com/psf/black"> <img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"> </a> <a href="https://google.github.io/styleguide/pyguide.html#s3.8-comments-and-docstrings"> <img alt="Doc style: google" src="https://img.shields.io/badge/%20style-google-3666d6.svg"> </a> <br/> <a href="https://pepy.tech/project/coola"> <img alt="Downloads" src="https://static.pepy.tech/badge/coola"> </a> <a href="https://pepy.tech/project/coola"> <img alt="Monthly downloads" src="https://static.pepy.tech/badge/coola/month"> </a> <br/> </p> ## Overview `coola` is a light Python library that provides simple functions to check in a single line if two complex/nested objects are equal or not. `coola` was initially designed to work with [PyTorch `Tensor`s](https://pytorch.org/docs/stable/tensors.html) and [NumPy `ndarray`](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html), but it is possible to extend it to [support other data structures](https://durandtibo.github.io/coola/customization). - [Motivation](#motivation) - [Documentation](https://durandtibo.github.io/coola/) - [Installation](#installation) - [Contributing](#contributing) - [API stability](#api-stability) - [License](#license) ## Motivation Let's imagine you have the following dictionaries that contain both a PyTorch `Tensor` and a NumPy `ndarray`. You want to check if the two dictionaries are equal or not. By default, Python does not provide an easy way to check if the two dictionaries are equal or not. It is not possible to use the default equality operator `==` because it will raise an error. The `coola` library was developed to fill this gap. `coola` provides a function `objects_are_equal` that can indicate if two complex/nested objects are equal or not. ```python import numpy import torch from coola import objects_are_equal data1 = {'torch': torch.ones(2, 3), 'numpy': numpy.zeros((2, 3))} data2 = {'torch': torch.zeros(2, 3), 'numpy': numpy.ones((2, 3))} objects_are_equal(data1, data2) ``` `coola` also provides a function `objects_are_allclose` that can indicate if two complex/nested objects are equal within a tolerance or not. ```python from coola import objects_are_allclose objects_are_allclose(data1, data2, atol=1e-6) ``` Please check the [quickstart page](https://durandtibo.github.io/coola/quickstart) to learn more on how to use `coola`. ## Installation We highly recommend installing a [virtual environment](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). `coola` can be installed from pip using the following command: ```shell pip install coola ``` To make the package as slim as possible, only the minimal packages required to use `coola` are installed. To include all the packages, you can use the following command: ```shell pip install coola[all] ``` Please check the [get started page](https://durandtibo.github.io/coola/get_started) to see how to install only some specific packages or other alternatives to install the library. ## Contributing Please check the instructions in [CONTRIBUTING.md](.github/CONTRIBUTING.md). ## API stability :warning: While `coola` is in development stage, no API is guaranteed to be stable from one release to the next. In fact, it is very likely that the API will change multiple times before a stable 1.0.0 release. In practice, this means that upgrading `coola` to a new version will possibly break any code that was using the old version of `coola`. ## License `coola` is licensed under BSD 3-Clause "New" or "Revised" license available in [LICENSE](LICENSE) file.


نیازمندی

مقدار نام
>=1.20,<2.0 numpy
>=1.10,<3.0 torch


زبان مورد نیاز

مقدار نام
>=3.9,<4.0 Python


نحوه نصب


نصب پکیج whl coola-0.0.6:

    pip install coola-0.0.6.whl


نصب پکیج tar.gz coola-0.0.6:

    pip install coola-0.0.6.tar.gz