معرفی شرکت ها


convml-tt-0.13.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Neural Network based study of convective organisation
ویژگی مقدار
سیستم عامل -
نام فایل convml-tt-0.13.1
نام convml-tt
نسخه کتابخانه 0.13.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Leif denby
ایمیل نویسنده l.c.denby@leeds.ac.uk
آدرس صفحه اصلی https://github.com/convml/convml_tt
آدرس اینترنتی https://pypi.org/project/convml-tt/
مجوز Apache
# Studying convective organisation with neural networks This repository contains code to generate training data, train and interprete the neural network used in [L. Denby (2020)](https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL085190) collected in a python module called `convml_tt`. From version `v0.7.0` it was rewritten to use [pytorch-lightning](https://pytorchlightning.ai/) rather than [fastai v1](https://fastai1.fast.ai/) to adopt best-practices and make it easier to modify and carry out further research on the technique. ## Getting started To use the `convml_tt` codebase you will first need to install [pytorch](https://pytorch.org/) which can most easily by done with [conda](https://www.anaconda.com/distribution/) (or use [mamba](https://github.com/conda-forge/miniforge#mambaforge) which is `conda` re-implemented in c++ and is orders of magnitude faster - once installed just replace `conda` with `mamba` in the commands below). 1. Once conda is installed you can create a conda environment: ```bash conda create -n convml-tt conda activate convml-tt ``` Into this conda environment you the need to install pytorch. Depending on whether you have access to a GPU or not you will need to install different pytorch packages: 2a. For GPU-based trained and inference: ```bash conda install pytorch "torchvision>=0.4.0" pytorch-cuda -c pytorch -c nvidia ``` (to check that is working you can run `python -c 'import torch; print(torch.cuda.is_available())'`) 2b. For CPU-based training and inference: ```bash conda install pytorch "torchvision>=0.4.0" cpuonly -c pytorch ``` 3. With the environment set up and pytorch installed you can now install `convml-tt` directly from [pypi](https://pypi.org/) using pip (note if you are planning on modifying the `convml-tt` functionality you will want to download the `convml-tt` source code and install from a local copy instead of from pypi. See [development instructions]() for more details): ```bash python -m pip install convml-tt ``` You will now have `convml-tt` available whenever you activate the `convml-tt` conda environment. You will have the *base* components of `convml-tt` installed which enable training the model on a existing triplet-dataset and making predictions with a trained model. Functionality to create training data is contained in a separate package called [convml-data](https://github.com/convml/convml-data) ## Training Below are details on how to obtain training data and how to train the model ### Training data ### Example dataset A few example training datasets can be downloaded using the following command ```bash python -m convml_tt.data.examples ``` ### Model training You can use the CLI (Command Line Interface) to train the model ```bash python -m convml_tt.trainer data_dir ``` where `data_dir` is the path of the dataset you want to use. There are a number of optional command flags available, for example to train with one GPU use the training process to [weights & biases](https://wandb.ai) use `--log-to-wandb`. For a list of all the available flags use the `-h`. Training can also be done interactively in for example a jupyter notebook, you can see some simple examples how what commands to use by looking at the automated tests in [tests/](tests/). Finally there detailed notes on how to train on the ARC3 HPC cluster at University of Leeds are in [doc/README.ARC3.md](doc/README.ARC3.md), on the [JASMIN](doc/README.JASMIN.md) analysis cluster and on [Google Colab](https://colab.research.google.com/drive/18Hmik9Nacqo-29b16hgQ3XfPum1lHdCO?usp=sharing). # Model interpretation There are currently two types of plots that I use for interpreting the embeddings that the model produces. These are a dendrogram with examples plotted for each class of the leaf nodes of the dendrogram and a scatter plot of two dimensions annotated with example tiles so the actual tiles can be visualised. There is an example of how to make these plots and how to easily generate an embedding (or encoding) vector for each example tile in `example_notebooks/model_interpretation`. Again this notebook expects the directory layout mentioned above.


نیازمندی

مقدار نام
- xarray
- netCDF4
- matplotlib
>=1.2.0 pytorch-lightning
>=0.5.0 kornia
- scikit-learn
- seaborn
- parse
- jupyter
- scikit-image
>=0.3 antialiased-cnns
>=0.4.0 torchvision
- semver
- statsmodels
- pytest
- nbval
- pre-commit
- ipython
- luigi
- luigi
- cartopy
- satpy
- esmpy
- xesmf
>=0.2.0 convml-data
- pytest
- nbval


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl convml-tt-0.13.1:

    pip install convml-tt-0.13.1.whl


نصب پکیج tar.gz convml-tt-0.13.1:

    pip install convml-tt-0.13.1.tar.gz