معرفی شرکت ها


conveiro-0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Visualization of filters in convolutional neural networks
ویژگی مقدار
سیستم عامل -
نام فایل conveiro-0.2
نام conveiro
نسخه کتابخانه 0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده The ShowmaxLab & Showmax teams
ایمیل نویسنده oss+conveiro@showmax.com
آدرس صفحه اصلی https://github.com/showmax/conveiro
آدرس اینترنتی https://pypi.org/project/conveiro/
مجوز Apache License, Version 2.0
# Conveiro Conveiro (convolutional + oneiro, Greek for "dream") is an open source library for feature visualization in deep convolutional networks. It implements multiple techniques for visualization, such as laplace, multiscale, deep dream and CDFS. All of these methods are based on: ### Deep dream Deep dream is implementation of technique based on * https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb * https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html How it works: * We create random image (or we can use seed image) * We feed this image to network and optimize it based on calculated gradients * We employ few clever tricks based on scaling and frequencies There are few more steps but this is the essence of this technique. ### CDFS CDFS (color-decorrelated fourier space) is custom implementation of technique based on * https://distill.pub/2017/feature-visualization/ * https://github.com/tensorflow/lucid How it works: * We generate random complex coefficient * We use said coefficients to generate image by inverse fourier transformation * After we feed this image to network we can calculate gradients and use gradient descent to optimize these coefficient There are few more steps but this is the essence of this technique. ## Requirements * Python 3.4 and above * Tensorflow (CPU or GPU variant) * Numpy * Matplotlib * click, tensornets, pillow, graphviz (if you want to use the command-line tool with examples) ## Installation ``` pip install conveiro ``` Development version ``` pip install -e . # from cloned repository ``` ## Command-line usage This library comes with a command-line tool called `conveiro` that can visualize and hallucinate networks from `tensornets` library. ``` Usage: conveiro COMMAND [OPTIONS] [ARGS]... Commands: graph Create a graph of the network architecture. layers List available layers (operations) in a network. networks List available network architectures (from tensornets). render Hallucinate an image for a layer / neuron. ``` Run `conveiro --help` or `conveiro [command-name] --help` to show the list of capabilities and options. ## Examples For examples how to use this library please take a look at jupyter notebooks in `docs/` folder: * https://github.com/Showmax/conveiro/tree/master/docs/deep_dream.ipynb * https://github.com/Showmax/conveiro/tree/master/docs/cdfs.ipynb Simplest example: ```python import tensorflow as tf import tensornets as nets from conveiro import cdfs input_t, decorrelated_image_t, coeffs_t = cdfs.setup(224) model = nets.Inception1(input_t) graph = tf.get_default_graph() with tf.Session() as sess: sess.run(model.pretrained()) objective = graph.get_tensor_by_name("inception1/block3b/concat:0") image = cdfs.render_image(sess, decorrelated_image_t, coeffs_t, objective[..., 55], 0.01) cdfs.show_image(cdfs.process_image(image)) ``` ![CDFS output](docs/example.png) **Note** The API is preliminary and may change in future versions.


نحوه نصب


نصب پکیج whl conveiro-0.2:

    pip install conveiro-0.2.whl


نصب پکیج tar.gz conveiro-0.2:

    pip install conveiro-0.2.tar.gz