معرفی شرکت ها


contrast-image-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

🌈 Library to work with contrast
ویژگی مقدار
سیستم عامل -
نام فایل contrast-image-0.1.6
نام contrast-image
نسخه کتابخانه 0.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nguyen Hoang Nam
ایمیل نویسنده nguyenhoangnam.dev@gmail.com
آدرس صفحه اصلی https://github.com/Nguyen-Hoang-Nam/contrast-image
آدرس اینترنتی https://pypi.org/project/contrast-image/
مجوز MIT
# Contrast-image Base on multiple papers about contrast, I create this library to contrast images with opencv. ## Installation ```bash pip install contrast-image ``` ## Usage ```python from contrast_image import contrast_image import cv2 as cv input = cv.imread('input.jpg') ci = CI(input, 'HSV') output = ci.GHE() ``` ## API ### CI Store all functions to contrast image ```python from contrast_image import contrast_image ci = CI(image, color_space = 'HSV') ``` #### GHE (Global Histogram Equalization) This function is similar to ```equalizeHist(image)``` in opencv. ```python ci.GHE() ``` - Return: image after equalization #### BBHE (Brightness Preserving Histogram Equalization) This function separate the histogram by the mean of the image, then equalize histogram of each part. This method tries to preserve brightness of output image by assume PDF is symmetrical distribution. ```python ci.BBHE() ``` - Return: image after equalization #### DSIHE (Dualistic Sub-Image Histogram Equalization) This function is similar to BBHE except using median instead of mean. Unlike BBHE, DSIHE tries to preserve brightness of output image by maximum entropy after separate. ```python ci.DSIHE() ``` - Return: image after equalization #### MMBEBHE (Minimum Mean Brightness Error Histogram Equalization) This function is similar to BBHE except using minimum mean brightness error instead of mean. Theortically, mean of output image (by GHE) is middle gray level. Therefore, MMBEBHE believe by separate histogram such that mean of output image near mean of input image must preserve brightness. ```python ci.MMBEBHE() ``` - Return: image after equalization #### BPHEME (Brightness Preserving Histogram Equalization with Maximum Entropy) This function finds matching function such that make output image maximum entropy, then using histogram specification to match input's histogram and matching function. Based on idea of DSIHE, BPHEME tries to generalize by using histogram specification and solve optimize problem by Lagrange interpolation. ```python ci.BPHEME() ``` - Return: image after equalization #### RLBHE (Range Limited Bi-Histogram Equalization) This function is similar to BBHE except using otsu's method instead of mean. Moreover, this limit range of gray level such that output image has minimum mean brightness error. This method tries to equalize histogram for foreground and background separately by Otsu's method. ```python ci.RLBHE() ``` - Return: image after equalization #### RMSHE (Recursively Mean-Separate Histogram Equalization) This function recursively separate histogram by mean. Therefore, ```recursive = 2``` will create 4 sub-histograms, then equalize each sub-histograms. Same idea as BBHE but recursively separate to preserve more brightness. ```python ci.RMSHE(recursive = 2) ``` - Parameter recurive: number of recursive time - Return: image after equalization #### RSIHE (Recursive Sub-Image Histogram Equalization) This function is similar to RMSHE except using median instead of mean. Same idea as DSIHE but recursively separate to preserve more brightness. ```python ci.RSIHE(recursive = 2) ``` - Parameter recurive: number of recursive time - Return: image after equalization #### RSWHE (Recursive Separated and Weighted Histogram Equalization) This function recursively separate histogram by mean or median, then weighting each sub-histogram before equalize them. This method similar to RMSHE and RSIHE except weighting sub-histogram to avoid local extreme value in histogram. ```python ci.RSWHE(type = 'mean', beta = 0, recursive = 2) ``` - Parameter type: 'mean' or 'median' - Parameter beta: increasing more brightness in output image - Parameter recurive: number of recursive time - Return: image after equalization #### FHSABP (Flattest Histogram Specification with Accurate Brightness Preservation) This function finds matching function such that make the flattest output's histogram, then using histogram specification to match input's histogram and matching function. Because of discrete, histogram equalization does not often the flattest histogram. FHSABP tries to solve optimization function to find the flattest output's histogram. ```python ci.FHSABP() ``` - Return: image after equalization #### WTHE (Weighted Thresholded Histogram Equalization) This function weight histogram before equalize it. ```python ci.WTHE(root, value, lower = 0) ``` - Return: image after equalization #### AGCWD (Adaptive Gamma Correction with Weighting Distribution) This function automatic correct gamma using weighting distribution ```python ci.AGCWD(alpha) ``` - Parameter alpha: adjustment - Return: image after equalization #### AGCCPF (Adaptive Gamma Correction Color Preserving Framework) This similar to AGCWD except smooth pdf ```python ci.AGCCPF(alpha) ``` - Parameter alpha: adjustment - Return: image after equalization ### Quantitation Store all functions to quantity output image ```python from contrast_image import quantitation quantitation = Quantitation() ``` #### AMBE (Absolute Mean Brightness Error) ```python ci.AMBE(input_image, output_image) ``` #### PSNR (Peak Signal to Noise Ratio) ```python ci.PSNR(input_image, output_image) ``` #### Entropy ```python ci.Entropy(image) ``` ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate. ## License [MIT](https://choosealicense.com/licenses/mit/)


نیازمندی

مقدار نام
- numpy
- opencv-python


نحوه نصب


نصب پکیج whl contrast-image-0.1.6:

    pip install contrast-image-0.1.6.whl


نصب پکیج tar.gz contrast-image-0.1.6:

    pip install contrast-image-0.1.6.tar.gz