معرفی شرکت ها


contentai-activity-classifier-1.3.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

ContentAI Activity Classification Service
ویژگی مقدار
سیستم عامل -
نام فایل contentai-activity-classifier-1.3.7
نام contentai-activity-classifier
نسخه کتابخانه 1.3.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Eric Zavesky
ایمیل نویسنده -
آدرس صفحه اصلی https://gitlab.research.att.com/turnercode/activity-classifier-extractor
آدرس اینترنتی https://pypi.org/project/contentai-activity-classifier/
مجوز Apache
activity-classifier-extractor ============================= Generates activity classifications from low-level feature inputs in support of analytic workflows within the `ContentAI Platform <https://www.contentai.io>`__, published as the extractor ``dsai_activity_classifier``. 1. `Getting Started <#getting-started>`__ 2. `Execution <#execution-and-deployment>`__ 3. `Creating Models <#creating-models>`__ 4. `Testing <#testing>`__ 5. `Future Development <#future-development>`__ 6. `Changes <CHANGES.md>`__ Getting Started =============== | This library is used as a `single-run executable <#contentai-standalone>`__. | Runtime parameters can be passed for processing that configure the returned results and can be examined in more detail in the `main <main.py>`__ script. - ``verbose`` - *(bool)* - verbose input/output configuration printing (*default=false*) - ``path_content`` - *(str)* - input video path for files to label (*default=video.mp4*) - ``path_result`` - *(str)* - output path for samples (*default=.*) - ``path_models`` - *(str)* - manifest path for model information (*default=data/models/manifest.json*) - ``time_interval`` - *(float)* - time interval for predictions from models (*default=3.0*) - ``average_predictions`` - *(bool)* - flatten predictions across time and class (*default=false*) - ``round_decimals`` - *(int)* - rounding decimals for predictions (*default=5*) - ``score_min`` - *(float)* - apply a minimum score threshold for classes (*default=0.1*) dependencies ------------ | To install package dependencies in a fresh system, the recommended technique is a set of | vanilla pip packages. The latest requirements should be validated from the ``requirements.txt`` file but at time of writing, they were the following. .. code:: shell pip install --no-cache-dir -r requirements.txt Execution and Deployment ======================== This package is meant to be run as a one-off processing tool that aggregates the insights of other extractors. command-line standalone ----------------------- Run the code as if it is an extractor. In this mode, configure a few environment variables to let the code know where to look for content. One can also run the command-line with a single argument as input and optionally ad runtime configuration (see `runtime variables <#getting-started>`__) as part of the ``EXTRACTOR_METADATA`` variable as JSON. .. code:: shell EXTRACTOR_METADATA='{"compressed":True}' Locally Run Classifier on Results ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For utility, the above line has been wrapped in the bash script ``run_local.sh``. .. code:: shell ./run_local.sh <docker_image> [<source_directory> <output_data_dir> [<json_args>]] [<all_args>] - run clip extraction on source with prior processing <docker_image> = 0 IF local command-line based (args using arg parse) = 1 IF local docker emulation = IMAGE_NAME IF docker image name to run ./run_local.sh 0 --path_content features/ --path_result results/ --verbose ./run_local.sh 1 features/ results/ 0 '{\"verbose\"true}' Through all of the above examples, the underlying command-line execution is similar to this excution run on the testing data. .. code:: shell python -u activity_classifier/main.py --path_content testing/data/launch/video.mp4 --path_result testing/class --path_models activity_classifier/data/models/manifest.json --verbose Feature-Based Similarity ~~~~~~~~~~~~~~~~~~~~~~~~ A helper script is also avaialble to compute the similarity of clips in one or more feature files. *(v1.1.0)* .. code:: shell python -u activity_classifier/features.py --path_content testing/data/dummy.txt \\ --feature_type dsai_videocnn dsai_vggish --path_result testing/dist ContentAI --------- Deployment ~~~~~~~~~~ Deployment is easy and follows standard ContentAI steps. .. code:: shell contentai deploy dsai_activity_classifier Deploying... writing workflow.dot done Alternatively, you can pass an image name to reduce rebuilding a docker instance. .. code:: shell docker build -t dsai_activity_classifier contentai deploy metadata-flatten dsai_activity_classifier Locally Downloading Results ~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can locally download data from a specific job for this extractor to directly analyze. .. code:: shell contentai data wHaT3ver1t1s --dir data Run as an Extractor ~~~~~~~~~~~~~~~~~~~ .. code:: shell contentai run https://bucket/video.mp4 -w 'digraph { dsai_videocnn -> dsai_activity_classifier; dsai_vggish -> dsai_activity_classifier }' JOB ID: 1Tfb1vPPqTQ0lVD1JDPUilB8QNr CONTENT: s3://bucket/video.mp4 STATE: complete START: Fri Feb 15 04:38:05 PM (6 minutes ago) UPDATED: 1 minute ago END: Fri Feb 15 04:43:04 PM (1 minute ago) DURATION: 4 minutes EXTRACTORS my_extractor TASK STATE START DURATION 724a493 complete 5 minutes ago 1 minute Or run it via the docker image. Please review the ``run_local.sh`` file for more information. View Extractor Logs (stdout) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: shell contentai logs -f <my_extractor> my_extractor Fri Nov 15 04:39:22 PM writing some data Job complete in 4m58.265737799s Adding New Models ================= There are two steps to adding new models. 1. First, train the models and formulate a well-known structure (this can be done exhaustively across a number of model types). See `MODELS.rst <MODELS.rst>`__ for more details. 2. Update the manifest according to the instructions below to indicate how the activity classifier should load the model (e.g. the `framework`), the required features, and a few fields for understanding other descriptions (e.g. the `name` and the `id`). Updating The Manifest --------------------- Adding models to the pre-determined set of models is as easy as editing a manifest file and adding a model into git LFS. 1. Archive the new model into a serialized fileset. At time of writing, this was serializing models from `sklearn <https://scikit-learn.org>`__ with simple `pickle load/save serialization <https://scikit-learn.org/stable/modules/model_persistence.html>`__. 2. Gather all of the relevant output files and compress them if you can. Currently, the library understands gzip compression extensions (e.g. ".gz"). 3. Choose the appropriate sub-directory that corresponds to the upstream feature extractor. For example, models built on ``3dcnn`` features may process new videos (via `extractor chaining <https://www.contentai.io/docs/extractor-chaining>`__) to the extractor ``dsai_3dcnn``. If one doesn't exist yet, please create a new directory, but remember what combination of audio and video features is required. 4. Modify the manifest file in ``activity_classifier/data/models/manifest.json`` for your new entry. Specifically, the input video and audio features must be defined as well as the serialization library. Below is an example block that indicates ``3dcnn` video and ``vggish`` audio features for a model crated with ``sklearn`` where prediction results will be nested with the name ``Running``. .. code:: shell [ ... { "path": "3dcnn-vggish/lr-Running.pkl.gz", "name": "Running", "id": "ugc", "framework": "sklearn", "video": "dsai_videocnn", "audio": "dsai_vggish" }, ... ] 5. Prepare to add your model files to the repo. **NOTE This repo uses `git-lfs <https://git-lfs.github.com/>`__ to store all binary files like models. If your model is added with regular git tools alone, you will get a sternly worded email (and friendly advice on how to re-add correctly).** .. code:: shell (from the base directory only) git lfs track activity_classifier/data/models/3dcnn/moonwalk_model.pkl.gz git add activity_classifier/data/models/3dcnn/moonwalk_model.pkl.gz git add activity_classifier/data/models/manifest.json 6. Test your model with the data in the ``testing`` directory. The CI/CD process should do this too but it's always easier to find and fix problems here than with a vague email. The features in this directory came from processing of the `HBO Max Launch Video <https://www.youtube.com/watch?v=9yLNhhHs3-k>`__, which is publicly available as a reference. .. code:: shell (from the base directory) ./run_local.sh 0 --path_content testing/data/test.mp4 --time_interval 1.5 (check for predictions from your new model in data.json) Testing ======= Testing is included via tox. To launch testing for the entire package, just run `tox` at the command line. Testing can also be run for a specific file within the package by setting the evironment variable `TOX_ARGS`. .. code:: shell TOX_ARG=test_basic.py tox Future Development ================== - additional training hooks? Changes ======= Generates activity classifications from low-level feature inputs in support of analytic workflows within the `ContentAI Platform <https://www.contentai.io>`__. 1.3 --- 1.3.7 ~~~~~ - fix run_local typos - more verbosity checks 1.3.6 ~~~~~ - modeling.py separators - docs reorg 1.3.5 ~~~~~ - contentai key request fix 1.3.3 ~~~~~ - docs update - multiclass write 1.3.2 ~~~~~ - docker build update, run example update 1.3.1 ~~~~~ - docs fix for example of using package - bug fix for default location, change inputs to classify function 1.3.0 ~~~~~ - move models out of the primary package - *breaking change*, rename input param `path_models` to `path_manifest` 1.2 --- 1.2.2 ~~~~~ - bump version for model migration to LFS 1.2.1 ~~~~~ - fix docker/deployed image run command 1.2.0 ~~~~~ - switch to package representation, push to pypi - several updates for MANIFEST definition (id) - inclusion of multi-parameter training and testing framework - safety for model loading, catch exceptions, return gracefully - update documents to split for binary models 1.1 --- 1.1.1 ~~~~~ - cosmetic change for reuse in other libraries 1.1.0 ~~~~~ - refactor feature code, add utility for difference computation among segments - min value thresholding to avoid low scoring results in output (default=0.1) - refactor caching information for feature load (allow flatten, remove cache, allow multi-asset) - allow recursive feature load for distance compute 1.0 --- 1.0.2 ~~~~~ - fixes for output, modify to require other extractors as dependencies - fix order of paramters for local runs 1.0.1 ~~~~~ - updates for integration of other models, fixes for prediction output - add l2norm after average/merge in time of source features 1.0.0 ~~~~~ - initial project merge from other sources - generates json prediction dict - callable as package - includes some testing routines with windowing comparison


نیازمندی

مقدار نام
==1.0.4 pandas
==2.7.1 numexpr
==0.23.1 scikit-learn
==2.10.0 h5py
==3.2.1 matplotlib
==0.0 imblearn
==2.2.0 tensorflow
>=1.0.4 contentaiextractor


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl contentai-activity-classifier-1.3.7:

    pip install contentai-activity-classifier-1.3.7.whl


نصب پکیج tar.gz contentai-activity-classifier-1.3.7:

    pip install contentai-activity-classifier-1.3.7.tar.gz