معرفی شرکت ها


conmo-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Conmo is a framework developed in Python whose main objective is to facilitate the execution and comparison of different anomaly detection and experiments.
ویژگی مقدار
سیستم عامل -
نام فایل conmo-1.0.1
نام conmo
نسخه کتابخانه 1.0.1
نگهدارنده ['GrupoMyM']
ایمیل نگهدارنده []
نویسنده GrupoMyM
ایمیل نویسنده mym.inv.uniovi@gmail.com
آدرس صفحه اصلی https://github.com/MyM-Uniovi/conmo
آدرس اینترنتی https://pypi.org/project/conmo/
مجوز -
# Conmo [![Documentation Status](https://readthedocs.org/projects/conmo/badge/?version=latest)](https://conmo.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/conmo.png)](https://badge.fury.io/py/conmo) [![Upload Python Package](https://github.com/MyM-Uniovi/conmo/actions/workflows/python-publish.yml/badge.svg)](https://github.com/MyM-Uniovi/conmo/actions/workflows/python-publish.yml) [Documentation](https://conmo.readthedocs.io/en/latest/index.html) | [PyPI Package](https://pypi.org/project/conmo/) Conmo is a framework developed in Python whose main objective is to facilitate the execution and comparison of different experiments mainly related to Anomaly Detection and Condition Monitoring problems. These experiments consist of a series of concatenated stages forming a pipeline architecture, i.e. the output of one stage is the input of the next one. This framework aims to provide a way to standarize machine learning experiments, thus being able to reconstruct result tables of scientific papers. ## Requirements Conmo works properly in Python versions 3.7 and 3.8. It has not yet been tested for operation with newer or deprecated versions. To be able to start working with Conmo you need to have installed this list of libraries: * Numpy * Pandas * Tensorflow * Scikit-Learn * Scipy * Requests * Pyarrow If you want to make a contribution by modifying code and documentation you need to include these libraries as well: * Sphinx * Sphinx-rtd-theme * Isort * Autopep8 ## Installation There are currently two ways to install Conmo: ### Package manager Pip The easiest way is to use the pip command so that it's installed together with all its dependencies. ```bash pip install conmo ``` ### From source code You can also download this repository and then create a virtual environment to install the dependencies in. We recommend this option if you plan to contribute to Conmo. ```bash git clone https://github.com/MyM-Uniovi/conmo.git cd conmo ``` In /scripts folder we provide a bash script to prepare a Conda environment ready for running Conmo: ```bash cd scripts ./install_conmo_conda.sh ``` In case you are not using a Linux distribution and your OS is Windows 10/11 you can use Windows Subsytem for Linux (WSL) tool or create the virtual environment manually. To check if the Conda enviroment is activated you should see a (conda_env_name) in your command line. If it is not activated, then you can activated it using: ```bash conda activate conda_env_name ``` ## Overview The experiments in Conmo have a pipeline-based architecture. A pipeline consists of a chain of processes connected in such a way that the output of each element of the chain is the input of the next, thus creating a data flow. Each of these processes represents one of the typical generic steps in Machine Learning experiments. These steps are: 1. Datasets 2. Splitters 3. Preprocesses 4. Algorithms 5. Metrics In "/examples" folder there are a small set of Conmo experiments with source code explained to try to help you understand how this framework works. ## Authors Conmo has been developed by [Metrology and Models Group](https://mym.grupos.uniovi.es/en/inicio) in University of Oviedo (Principality of Asturias, Spain). However, as this is a collaborative project it is intended that anyone can include their own experiments, so please feel free to collaborate with us! ## Issues & Bugs As the project is currently in an early stage of development, it is easy for different bugs and issues to appear, so please, if you detect one post a ticket in the issues tab or contact the developers directly via email: mym.inv.uniovi@gmail.com


نیازمندی

مقدار نام
- numpy
- pandas
- tensorflow
- requests
- scipy
- scikit-learn
- pyarrow


زبان مورد نیاز

مقدار نام
>=3.7,<3.10 Python


نحوه نصب


نصب پکیج whl conmo-1.0.1:

    pip install conmo-1.0.1.whl


نصب پکیج tar.gz conmo-1.0.1:

    pip install conmo-1.0.1.tar.gz