معرفی شرکت ها


confseq-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Confidence sequences and uniform boundaries
ویژگی مقدار
سیستم عامل -
نام فایل confseq-0.0.9
نام confseq
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Steve Howard
ایمیل نویسنده dev@gostevehoward.com
آدرس صفحه اصلی https://github.com/gostevehoward/confseq
آدرس اینترنتی https://pypi.org/project/confseq/
مجوز -
# Confidence sequences and uniform boundaries This library supports calculation of uniform boundaries, confidence sequences, and always-valid p-values. These constructs are useful in sequential A/B testing, best-arm identification, and other sequential statistical procedures. The library is written in C++ and Python with a full Python interface and partial R interface. The main references are - Howard, S. R., Ramdas, A., McAuliffe, J., and Sekhon, J. (2021), [Time-uniform, nonparametric, nonasymptotic confidence sequences](https://arxiv.org/abs/1810.08240), The Annals of Statistics, 49(2), 1055-1080. - Howard, S. R. and Ramdas, A. (2021), [Sequential estimation of quantiles with applications to A/B-testing and best-arm identification](https://arxiv.org/abs/1906.09712), Bernoulli, to appear. - Waudby-Smith, I. and Ramdas, A. (2021), [Estimating means of bounded random variables by betting](https://arxiv.org/pdf/2010.09686.pdf), preprint, arXiv:2010.09686. - Waudby-Smith, I. and Ramdas, A. (2020), [Confidence sequences for sampling without replacement](https://arxiv.org/pdf/2006.04347.pdf), NeurIPS, 33. This library is in early-stage development and should not be considered stable. Automated tests run on Python 3.7, 3.8, 3.9 and 3.10 on the latest Ubuntu and macOS. The C++ implementation requires a compiler with C++14 to build the package, as well as the Boost C++ headers. In the Python package, functions are split across modules by topic, as detailed below. In the R package, all functions mentioned below are exported in a single namespace. ## Installing the python package Run `pip install confseq` at the command line. ## Installing the R package Run the following in the R console: ```R install.packages('devtools') devtools::install_github('gostevehoward/confseq/r_package') ``` ## Demos ### Estimating average treatment effect in a randomized trial `demo/ate_demo.py` illustrates how to compute a confidence sequence for average treatment effect in a randomized trial with bounded potential outcomes, along with an always-valid p-value sequence. The method is based on Corollary 2 of the paper and uses the gamma-exponential mixture boundary. This demo requires `numpy` and `pandas`. ### Quantile confidence sequences `demo/quantiles.py` illustrates how to use some of the included boundaries to construct confidence sequences for quantiles based on a stream of i.i.d. samples. The file includes a function to estimate a single, fixed quantile, as well as a function to estimate all quantiles simultaneously, with error control uniform over quantiles and time. ## Uniform boundaries The `confseq.boundaries` Python module implements several uniform boundaries from the confidence sequences paper. * There are four mixture boundaries. These are implemented by the functions `<TYPE>_log_mixture()` and `<TYPE>_mixture_bound()`, where `<TYPE>` is one of `normal` (Propositions 4 and 5), `gamma_exponential` (Proposition 8), `gamma_poisson` (Proposition 9), or `beta_binomial` (Propositions 6 and 7). * `<TYPE>_log_mixture(s, v, ...)` returns the logarithm of the mixture supermartingale when called with S\_t, the martingale, and V\_t, the intrinsic time process. The reciprocal of the exponential of this value is an always-valid p-value. These functions are denoted log(m(s,v)) in the paper. * `<TYPE>_mixture_bound(v, alpha, ...)` returns the uniform boundary with crossing probability at most alpha, evaluated at intrinsic time v. Each function takes another required argument `v_opt` and an optional argument `alpha_opt=0.05`. These arguments are used to set the tuning parameter for each mixture, denoted by rho or r in the paper, optimizing the uniform boundary with crossing probability `alpha_opt` for intrinsic time `v_opt`. Such tuning is discussed in section 3.5 of the paper. The gamma-exponential and gamma-Poisson mixtures also require a scale parameter `c`. The beta-binomial mixture requires range parameters `g` and `h`. Finally, the `normal_*` and `beta_binomial_*` functions accept an optional boolean parameter `is_one_sided` which is `True` by default. If `False`, the two-sided variants of these mixtures are used (Propositions 4 and 6). * The polynomial stitching boundary (see Theorem 1 and the subsequent example) is implemented by `poly_stitching_bound`. Besides `v` and `alpha`, this function requires the tuning parameter `v_min` as well as optional parameters `c`, `s`, and `eta`, all documented in the paper. * This module also includes a `bernoulli_confidence_interval` function which computes confidence sequences for the mean of any distribution with bounded support by making use of the sub-Bernoulli condition. Observations must be scaled so that the support is within the unit interval [0, 1]. All functions accept NumPy arrays in Python or vectors in R and perform vectorized operations. ## Quantile bounds The `confseq.quantiles` Python module implements two quantile-uniform confidence sequences from the quantile paper. * `empirical_process_lil_bound` is based on Theorem 2, and can be used to construct iterated-logarithm-rate confidence sequences for quantiles in which the confidence radius (in quantile space) is constant for all quantiles. This can also be used run the sequential Kolmogorov-Smirnov test described in section 7.2. * `double_stitching_bound` is based on Theorem 3, and can be used to construct confidence sequences for quantiles in which the confidence radius (in quantile space) varies, getting smaller for extreme quantiles close to zero and one. Finally, `quantile_ab_p_value` implements the two-sided sequential test of the hypothesis that two populations have equal values for some quantile, based on Theorem 5. The theorem covers tests of null hypothesis other than equality, as well as one-sided tests, but these are not yet implemented. ## C++ library The main underlying implementation is in a single-file, header-only C++ library in `src/confseq/uniform_boundaries.h`. The top of the file defines a simplified interface mirroring the Python interface described above. Below that is an object-oriented interface useful for more involved work. The `confseq.boundaries` Python module is a wrapper generated by [pybind11](https://github.com/pybind/pybind11). The R package uses [Rcpp](http://www.rcpp.org). ## Additional python modules Some implementations (such as betting-based or without-replacement confidence sequences) are only available in Python at the moment. Specifically, these include the implementations of * `src/confseq/betting.py` * `src/confseq/betting_strategies.py` * `src/confseq/conjmix_bounded.py`, and * `src/confseq/cs_plots.py`. If you would like to help create an R interface for these methods, it would be appreciated! ## Unit tests ### C++ ```bash make -C /path/to/confseq/test runtests ``` ### Python (with random tests) ```bash pytest --ignore=test/googletest-1.8.1/ ``` ### Python (without random tests) ```bash pytest -m "not random" --ignore=test/googletest-1.8.1/ ``` ## Citing this software Howard, S. R., Waudby-Smith, I. and Ramdas, A. (2019-), ConfSeq: software for confidence sequences and uniform boundaries, https://github.com/gostevehoward/confseq [Online; accessed <today>]. ```bibtex @Misc{, author = {Steven R. Howard, Ian Waudby-Smith, and Aaditya Ramdas}, title = {{ConfSeq}: software for confidence sequences and uniform boundaries}, year = {2021--}, url = "https://github.com/gostevehoward/confseq", note = {[Online; accessed <today>]} } ```


نیازمندی

مقدار نام
>=2.3 pybind11
- numpy
- matplotlib
- multiprocess
- scipy
- pytest
- pandas


نحوه نصب


نصب پکیج whl confseq-0.0.9:

    pip install confseq-0.0.9.whl


نصب پکیج tar.gz confseq-0.0.9:

    pip install confseq-0.0.9.tar.gz