معرفی شرکت ها


configmypy-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Fast and easy configuration of Python projects.
ویژگی مقدار
سیستم عامل -
نام فایل configmypy-0.1.0
نام configmypy
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jean Kossaifi
ایمیل نویسنده jean.kossaifi@gmail.com
آدرس صفحه اصلی https://github.com/JeanKossaifi/configmypy
آدرس اینترنتی https://pypi.org/project/configmypy/
مجوز Modified BSD
# ConfigMyPy Configure My Python: Easy configuration of Python projects. ## Quickstart Just clone the repository and install it, here in editable mode: ```bash git clone https://github.com/JeanKossaifi/configmypy cd configmypy python -m pip install -e . ``` Then, assuming you have a configuration file `config.yaml` in your folder, get your configuration using ```python from configmypy import ConfigPipeline, YamlConfig, ArgparseConfig pipe = ConfigPipeline([YamlConfig('./config.yaml'), ArgparseConfig()]) config = pipe.read_conf() ``` Then just read your parameters from config: ``` arg = config.arg arg2 = config['arg2'] ... ``` The script will read config.yaml, as well as optional command-line arguments, which will overwrite the config. ## Rationale How many times did you start having a large Python project, let's say to run some Machine Learning models, where you wanted to change quickly the parameters. Then you want to track them. In you write a small logger. Then you write a small yaml config file to more easily manage the quickly growing list of parameters. Then you realize you sometimes need to change some of these parameters on the fly. In comes argparse, and you manually override an increasingly long list of paramters with a code becoming a long list of ```python if args.parameter is not None: config['parameter'] = args.parameter ``` ...and there goes your sanity... Along with any hope of properly managing and tracking your experiments. To address this frustration, I wrote this minimal package that makes this easy. ## Reading from a `.yaml` config file Imagine you have a `config.yaml` file that looks like this: ```yaml default: opt: optimizer: 'adam' lr: 0.1 data: dataset: 'ns' batch_size: 12 test: opt: optimizer: 'SGD' ``` You can read that using `configmypy.YamlConfig`: ```yaml reader = YamlConfig('./config.yaml', config_name='default') config, _ = reader.read_conf() ``` ## Bunch configurations All our configurations return a Bunch, not a dict. A Bunch is simply a dictionary that exposes its parameters as attributes so you can access them, equivalently, as `config['param']` or `config.param`. ## Configuration Pipeline The real power of `configmypy` comes from the ConfigPipeline: you can have several steps called sequentially. A typical usecase would be: 1) Read a default (.yaml) config 2) Optionally overwrite any of those parameters using argparse (command-line arguments) 3) If the user specified another configuration, update the parameters read so far with that new config This would look like this with `configmypy`: ```python pipe = ConfigPipeline([YamlConfig('./config.yaml', config_name='default'), ArgparseConfig(config_file=None, config_name=None), YamlConfig()]) config = pipe.read_conf() ``` This will: 1) first read the `default` section in `config.yaml` 2) update any parameters with those passed by the user, including additional parameters `config_file` and `config_name` which are automatically passed to the next step 3) If the user specified a `config_file`, that will be read by the next step and used to update the configuration. You can check the configuration by calling `pipe.log()`: ```python >>> pipe.log() ############################### ##### CONFIGURATION ##### ############################### Steps: ------ (1) YamlConfig with config_file=./config.yaml, config_name=default (2) ArgparseConfig with additional config={'config_file': None, 'config_name': None} (3) YamlConfig with config_file=config.yaml, config_name=test ------------------------------- Configuration: -------------- opt.optimizer=SGD opt.lr=0.1 data.dataset=ns data.batch_size=24 ############################### ``` ## Questions or issues This is very much a project in development that I wrote for myself and decided to open-source so myself and others could easily reuse it for multiple projects, while knowing it is actually tested! If you have any questions or find any bugs, please open an issue, or better yet, a pull-request!


نیازمندی

مقدار نام
- pytest
- pytest-mock
- ruamel.yaml


نحوه نصب


نصب پکیج whl configmypy-0.1.0:

    pip install configmypy-0.1.0.whl


نصب پکیج tar.gz configmypy-0.1.0:

    pip install configmypy-0.1.0.tar.gz