معرفی شرکت ها


conec-2.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Context Encoders (ConEc) as an extension of word2vec
ویژگی مقدار
سیستم عامل -
نام فایل conec-2.0.1
نام conec
نسخه کتابخانه 2.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده cod3licious
ایمیل نویسنده cod3licious@gmail.com
آدرس صفحه اصلی https://github.com/cod3licious/conec
آدرس اینترنتی https://pypi.org/project/conec/
مجوز MIT
# Context Encoders (ConEc) With this code you can train and evaluate Context Encoders (ConEc), an extension of word2vec, which can learn word embeddings from large corpora and create out-of-vocabulary embeddings on the spot as well as distinguish between multiple meanings of words based on their local contexts. For further details on the model and experiments please refer to the [paper](https://arxiv.org/abs/1706.02496) - and of course if any of this code was helpful for your research, please consider citing it: ``` @inproceedings{horn2017conecRepL4NLP, author = {Horn, Franziska}, title = {Context encoders as a simple but powerful extension of word2vec}, booktitle = {Proceedings of the 2nd Workshop on Representation Learning for NLP}, year = {2017}, organization = {Association for Computational Linguistics}, pages = {10--14} } ``` The code is intended for research purposes. It should run with Python 2.7 and 3 versions - no guarantees on this though (open an issue if you find a bug, please)! ### installation You either download the code from here and include the conec folder in your `$PYTHONPATH` or install (the library components only) via pip: ``` $ pip install conec ``` ### conec library components dependencies: `numpy, scipy` - `word2vec.py`: code to train a standard word2vec model, adapted from the corresponding [gensim](https://radimrehurek.com/gensim/) implementation. - `context2vec.py`: code to build a sparse context matrix from a large collection of texts; this context matrix can then be multiplied with the corresponding word2vec embeddings to give the context encoder embeddings: ```python # get the text for training sentences = Text8Corpus('data/text8') # train the word2vec model w2v_model = word2vec.Word2Vec(sentences, mtype='cbow', hs=0, neg=13, vector_size=200, seed=3) # get the global context matrix for the text context_model = context2vec.ContextModel(sentences, min_count=w2v_model.min_count, window=w2v_model.window, wordlist=w2v_model.wv.index2word) context_mat = context_model.get_context_matrix(fill_diag=False, norm='max') # multiply the context matrix with the (length normalized) word2vec embeddings # to get the context encoder (ConEc) embeddings conec_emb = context_mat.dot(w2v_model.wv.vectors_norm) # renormalize so the word embeddings have unit length again conec_emb = conec_emb / np.array([np.linalg.norm(conec_emb, axis=1)]).T ``` ### examples additional dependencies: `sklearn` `test_analogy.py` and `test_ner.py` contain the code to replicate the analogy and named entity recognition (NER) experiments discussed in the aforementioned paper. To run the analogy experiment, it is assumed that the [`text8 corpus`](http://mattmahoney.net/dc/text8.zip) or [`1-billion corpus`](http://code.google.com/p/1-billion-word-language-modeling-benchmark/) as well as the [`analogy questions`](https://code.google.com/archive/p/word2vec/) are in a data directory. To run the named entity recognition experiment, it is assumed that the corresponding [`training and test files`](http://www.cnts.ua.ac.be/conll2003/ner/) are located in the data/conll2003 directory. If you have any questions please don't hesitate to send me an [email](mailto:cod3licious@gmail.com) and of course if you should find any bugs or want to contribute other improvements, pull requests are very welcome!


نیازمندی

مقدار نام
- future
- numpy
- scipy


نحوه نصب


نصب پکیج whl conec-2.0.1:

    pip install conec-2.0.1.whl


نصب پکیج tar.gz conec-2.0.1:

    pip install conec-2.0.1.tar.gz