معرفی شرکت ها


condor-tensorflow-1.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A tensorflow implementation of Conditionals for Ordinal Regression
ویژگی مقدار
سیستم عامل -
نام فایل condor-tensorflow-1.0.1
نام condor-tensorflow
نسخه کتابخانه 1.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Garrett Jenkinson
ایمیل نویسنده Jenkinson.William@mayo.edu
آدرس صفحه اصلی https://github.com/GarrettJenkinson/condor_tensorflow
آدرس اینترنتی https://pypi.org/project/condor-tensorflow/
مجوز -
<img src="https://github.com/GarrettJenkinson/condor_tensorflow/raw/main/docs/img/condor.png" width=300> # Condor Ordinal regression in Tensorflow Keras ![Continuous Integration](https://github.com/GarrettJenkinson/condor_tensorflow/actions/workflows/python-test.yml/badge.svg) [![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/GarrettJenkinson/condor_tensorflow/blob/main/LICENSE) ![Python 3](https://img.shields.io/badge/python-3-blue.svg) Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jenkinson et al (2021). CONDOR is compatible with any state-of-the-art deep neural network architecture, requiring only modification of the output layer, the labels, and the loss function. [Read our full documentation to learn more.](https://garrettjenkinson.github.io/condor_tensorflow/) We also have implemented [CONDOR for pytorch](https://github.com/GarrettJenkinson/condor_pytorch). This package includes: * Ordinal tensorflow loss function: `CondorOrdinalCrossEntropy` * Ordinal tensorflow error metric: `OrdinalMeanAbsoluteError` * Ordinal tensorflow error metric: `OrdinalEarthMoversDistance` * Ordinal tensorflow sparse loss function: `CondorSparseOrdinalCrossEntropy` * Ordinal tensorflow sparse error metric: `SparseOrdinalMeanAbsoluteError` * Ordinal tensorflow sparse error metric: `SparseOrdinalEarthMoversDistance` * Ordinal tensorflow activation function: `ordinal_softmax` * Ordinal sklearn label encoder: `CondorOrdinalEncoder` <img src="https://github.com/GarrettJenkinson/condor_tensorflow/blob/main/docs/img/rankconsistent.png" width=500> ## Installation Install the stable version via pip: ```bash pip install condor-tensorflow ``` Alternatively install the most recent code on GitHub via pip: ```bash pip install git+https://github.com/GarrettJenkinson/condor_tensorflow/ ``` `condor_tensorflow` should now be available for use as a Python library. ## Docker container As an alternative to the above, we provide a convenient Dockerfile that will build a container with `condor_tensorflow` along with all of its dependencies (Python 3.6+, Tensorflow 2.2+, sklearn, numpy). This can be used as follows: ```bash # Clone this git repository git clone https://github.com/GarrettJenkinson/condor_tensorflow/ # Change directory to the cloned repository root cd condor_tensorflow # Create a docker image docker build -t cpu_tensorflow -f cpu.Dockerfile ./ # run image to serve a jupyter notebook docker run -it -p 8888:8888 --rm cpu_tensorflow # how to run bash inside container (with Python that will have required dependencies available) docker run -u $(id -u):$(id -g) -it -p 8888:8888 --rm cpu_tensorflow bash ``` Assuming a GPU enabled machine with NVIDIA drivers installed replace `cpu` above with `gpu`. ## Example This is a quick example to show basic model implementation syntax.<br> Example assumes existence of input data (variable 'X') and ordinal labels (variable 'labels'). ```python import tensorflow as tf import condor_tensorflow as condor NUM_CLASSES = 5 # Ordinal 'labels' variable has 5 labels, 0 through 4. enc_labs = condor.CondorOrdinalEncoder(nclasses=NUM_CLASSES).fit_transform(labels) model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(32, activation = "relu")) model.add(tf.keras.layers.Dense(NUM_CLASSES-1)) # Note the "-1" model.compile(loss = condor.CondorOrdinalCrossEntropy(), metrics = [condor.OrdinalMeanAbsoluteError()]) model.fit(x = X, y = enc_labs) ``` [See this colab notebook](https://github.com/GarrettJenkinson/condor_tensorflow/blob/main/docs/CONDOR_TensorFlow_demo.ipynb) for extended examples of ordinal regression with MNIST and Amazon reviews (universal sentence encoder). Please post any issues to the [issue queue](https://github.com/GarrettJenkinson/condor_tensorflow/issues). **Acknowledgments**: Many thanks to [the CORAL ordinal authors](https://github.com/ck37/coral-ordinal) and [the CORAL pytorch authors](https://github.com/Raschka-research-group/coral_pytorch) whose repos provided a roadmap for this codebase. ## References [Jenkinson, Khezeli, Oliver, Kalantari, Klee. Universally rank consistent ordinal regression in neural networks, arXiv:2110.07470, 2021.](https://arxiv.org/abs/2110.07470)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl condor-tensorflow-1.0.1:

    pip install condor-tensorflow-1.0.1.whl


نصب پکیج tar.gz condor-tensorflow-1.0.1:

    pip install condor-tensorflow-1.0.1.tar.gz