معرفی شرکت ها


concurrentbuffer-0.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل concurrentbuffer-0.0.8
نام concurrentbuffer
نسخه کتابخانه 0.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Mart van Rijthoven <mart.vanrijthoven@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/concurrentbuffer/
مجوز MIT License Copyright (c) 2021 martvanrijthoven Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# Concurrent Buffer [![PyPI version](https://badge.fury.io/py/concurrentbuffer.svg)](https://badge.fury.io/py/concurrentbuffer) [![tests](https://github.com/martvanrijthoven/concurrent-buffer/actions/workflows/tests.yml/badge.svg)](https://github.com/martvanrijthoven/concurrent-buffer/actions/workflows/tests.yml) [![Coverage Status](https://coveralls.io/repos/github/martvanrijthoven/concurrent-buffer/badge.svg?branch=main)](https://coveralls.io/github/martvanrijthoven/concurrent-buffer?branch=main) [![codeinspector](https://api.codiga.io/project/34463/score/svg)](https://app.codiga.io/public/project/34463/concurrent-buffer/dashboard) The available number of central processing units (CPUs) in home and server computers can help to parallelize and speed up specific tasks. The python programming language comes with a [multiprocessing package](https://docs.python.org/3/library/multiprocessing.html) that allows running tasks on multiple CPUs. In addition, python 3.8 introduced [shared memory](https://docs.python.org/3/library/multiprocessing.shared_memory.html), allowing for sharing data between processes. A potential use case for this shared memory is to compensate for possible speed variance when transferring data via a buffer. This package aims to be a general solution for a concurrent buffer, .i.e., a buffer filled with data using parallel running 'producer' processes. A commander process controls the produced data via user-defined dictionary messages. At the same time, the main process can consume the data using a BufferIterator in a fast and user-friendly way. Please see below the [installation instructions](#installation-and-dependencies) and an [example](#example-usage) on how to use this package as well as how to [create your own commander](#creating-a-commander) and how to [create your own producer](#creating-a-producer). For more information please see the [docs](https://martvanrijthoven.github.io/concurrent-buffer/). Feel free to open an issue if you have any questions or remarks. ## Installation and Dependencies This package requires [python>=3.8](https://www.python.org/downloads/) and [numpy](https://github.com/numpy/numpy) A binary installer for the latest version is available at the [Python Package Index (PyPI)](https://pypi.org/project/concurrentbuffer/) ```bash pip install concurrentbuffer ``` ## Example usage: Important note: - 'spawn' multiprocessing context will not work in a jupyter notebook/lab, use fork instead when working in a jupyter notebook / jupyter lab ###### Easy Usage: ```python from concurrentbuffer.iterator import buffer_iterator_factory # the number of cpus/producers cpus = 8 # the buffershape in the shared memory buffer_shapes = ((64, 256, 256, 3),) # the context of multiprocess (spawn or fork) context = 'spawn' # if the messages from the commander and the produced data are first in first out deterministic = True # You will have to create your own Commander class, please see instructions below # a user defined commander, should subclass the Commander class commander = IndexCommander(max_index=10) # You will have to create your own Producer class, please see instructions below # a user defined producer, should subclass the Producer class producer = DataProducer(data_shapes=buffer_shapes) # create a buffer iterator buffer_iterator = buffer_iterator_factory( cpus=cpus, buffer_shapes=buffer_shapes, commander=commander, producer=producer, context=context, deterministic=deterministic, ) # loop through the buffer that is filled concurrently for index in range(10): data = next(buffer_iterator) # always stop the iterator to close all processes and free the shared memory buffer_iterator.stop() ``` ###### Advanced Usage: ```python from multiprocessing.context import ForkContext, SpawnContext from concurrentbuffer.factory import BufferFactory from concurrentbuffer.info import BufferInfo from concurrentbuffer.iterator import BufferIterator from concurrentbuffer.state import BufferState from concurrentbuffer.system import BufferSystem # the number of cpus/producers cpus = 8 # the buffershape in the shared memory buffer_shapes = ((64, 256, 256, 3),) # the context of multiprocess (spawn or fork) context = SpawnContext() # if the messages from the commander and the produced data are first in first out deterministic = True # the number of buffers each with shape of buffer_shape count = cpus * len(BufferState) # buffer system contains the information of the system buffer_system = BufferSystem( cpus=cpus, context=context, deterministic=deterministic ) # buffer info contains the information of the buffers buffer_info = BufferInfo(count=count, shapes=buffer_shapes) # You will have to create your own Commander class, please see instructions below # a user defined commander, should subclass the Commander class commander = IndexCommander(max_index=10) # You will have to create your own Producer class, please see instructions below # a user defined producer, should subclass the Producer class producer = DataProducer(data_shapes=buffer_shapes) # a factor class that builds the buffer components buffer_factory = BufferFactory( buffer_system=buffer_system, buffer_info=buffer_info, commander=commander, producer=producer, ) # a buffer iterator created with the buffer factory that allows iterating throught the 'concurrent' buffer. with BufferIterator(buffer_factory=buffer_factory) as data_buffer_iterator: for index in range(10): data = next(data_buffer_iterator) ``` #### Creating a Commander ``` from concurrentbuffer.commander import Commander class IndexCommander(Commander): def __init__(self, max_index: int): self._max_index = max_index self._index = 0 def create_message(self) -> dict: message = {"index": self._index} self._index = (self._index + 1) % self._max_index return message ``` #### Creating a Producer ``` import numpy as np from concurrentbuffer.producer import Producer class DataProducer(Producer): def __init__(self, data_shapes: tuple): self._data_shapes = data_shapes def create_data(self, message: dict) -> np.ndarray: index = message['index'] return self._time_consuming_processing(index) def _time_consuming_processing(self, index) -> np.ndarray: ... #TODO use index and self._data_shape to create and process a numpy array ```


نیازمندی

مقدار نام
>=1.18.1 numpy


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl concurrentbuffer-0.0.8:

    pip install concurrentbuffer-0.0.8.whl


نصب پکیج tar.gz concurrentbuffer-0.0.8:

    pip install concurrentbuffer-0.0.8.tar.gz