معرفی شرکت ها


concise-concepts-0.6.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This repository contains an easy and intuitive approach to few-shot NER using most similar expansion over spaCy embeddings. Now with entity confidence scores!
ویژگی مقدار
سیستم عامل OS Independent
نام فایل concise-concepts-0.6.3
نام concise-concepts
نسخه کتابخانه 0.6.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده David Berenstein
ایمیل نویسنده david.m.berenstein@gmail.com
آدرس صفحه اصلی https://github.com/pandora-intelligence/concise-concepts
آدرس اینترنتی https://pypi.org/project/concise-concepts/
مجوز MIT
# Concise Concepts When wanting to apply NER to concise concepts, it is really easy to come up with examples, but pretty difficult to train an entire pipeline. Concise Concepts uses few-shot NER based on word embedding similarity to get you going with easy! Now with entity scoring! [![Python package](https://github.com/Pandora-Intelligence/concise-concepts/actions/workflows/python-package.yml/badge.svg?branch=main)](https://github.com/Pandora-Intelligence/concise-concepts/actions/workflows/python-package.yml) [![Current Release Version](https://img.shields.io/github/release/pandora-intelligence/concise-concepts.svg?style=flat-square&logo=github)](https://github.com/pandora-intelligence/concise-concepts/releases) [![pypi Version](https://img.shields.io/pypi/v/concise-concepts.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/concise-concepts/) [![PyPi downloads](https://static.pepy.tech/personalized-badge/concise-concepts?period=total&units=international_system&left_color=grey&right_color=orange&left_text=pip%20downloads)](https://pypi.org/project/concise-concepts/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square)](https://github.com/ambv/black) ## Usage This library defines matching patterns based on the most similar words found in each group, which are used to fill a [spaCy EntityRuler](https://spacy.io/api/entityruler). To better understand the rule definition, I recommend playing around with the [spaCy Rule-based Matcher Explorer](https://demos.explosion.ai/matcher). ### Tutorials - [TechVizTheDataScienceGuy](https://www.youtube.com/c/TechVizTheDataScienceGuy) created a [nice tutorial](https://prakhar-mishra.medium.com/few-shot-named-entity-recognition-in-natural-language-processing-92d31f0d1143) on how to use it. - [I](https://www.linkedin.com/in/david-berenstein-1bab11105/) created a [tutorial](https://www.rubrix.ml/blog/concise-concepts-rubrix/) in collaboration with Rubrix. The section [Matching Pattern Rules](#matching-pattern-rules) expands on the construction, analysis and customization of these matching patterns. # Install ``` pip install concise-concepts ``` # Quickstart ```python import spacy from spacy import displacy import concise_concepts data = { "fruit": ["apple", "pear", "orange"], "vegetable": ["broccoli", "spinach", "tomato"], "meat": ["beef", "pork", "fish", "lamb"], } text = """ Heat the oil in a large pan and add the Onion, celery and carrots. Then, cook over a medium–low heat for 10 minutes, or until softened. Add the courgette, garlic, red peppers and oregano and cook for 2–3 minutes. Later, add some oranges and chickens. """ nlp = spacy.load("en_core_web_lg", disable=["ner"]) nlp.add_pipe( "concise_concepts", config={ "data": data, "ent_score": True, # Entity Scoring section "verbose": True, "exclude_pos": ["VERB", "AUX"], "exclude_dep": ["DOBJ", "PCOMP"], "include_compound_words": False, "json_path": "./fruitful_patterns.json", }, ) doc = nlp(text) options = { "colors": {"fruit": "darkorange", "vegetable": "limegreen", "meat": "salmon"}, "ents": ["fruit", "vegetable", "meat"], } ents = doc.ents for ent in ents: new_label = f"{ent.label_} ({float(ent._.ent_score):.0%})" options["colors"][new_label] = options["colors"].get(ent.label_.lower(), None) options["ents"].append(new_label) ent.label_ = new_label doc.ents = ents displacy.render(doc, style="ent", options=options) ``` ![](https://raw.githubusercontent.com/Pandora-Intelligence/concise-concepts/master/img/example.png) # Features ## Matching Pattern Rules A general introduction about the usage of matching patterns in the [usage section](#usage). ### Customizing Matching Pattern Rules Even though the baseline parameters provide a decent result, the construction of these matching rules can be customized via the config passed to the spaCy pipeline. - `exclude_pos`: A list of POS tags to be excluded from the rule-based match. - `exclude_dep`: A list of dependencies to be excluded from the rule-based match. - `include_compound_words`: If True, it will include compound words in the entity. For example, if the entity is "New York", it will also include "New York City" as an entity. - `case_sensitive`: Whether to match the case of the words in the text. ### Analyze Matching Pattern Rules To motivate actually looking at the data and support interpretability, the matching patterns that have been generated are stored as `./main_patterns.json`. This behavior can be changed by using the `json_path` variable via the config passed to the spaCy pipeline. ## Most Similar Word Expansion Use a specific number of words to expand over. ```python data = { "fruit": ["apple", "pear", "orange"], "vegetable": ["broccoli", "spinach", "tomato"], "meat": ["beef", "pork", "fish", "lamb"] } topn = [50, 50, 150] assert len(topn) == len nlp.add_pipe("concise_concepts", config={"data": data, "topn": topn}) ``` ## Entity Scoring Use embdding based word similarity to score entities ```python import spacy import concise_concepts data = { "ORG": ["Google", "Apple", "Amazon"], "GPE": ["Netherlands", "France", "China"], } text = """Sony was founded in Japan.""" nlp = spacy.load("en_core_web_lg") nlp.add_pipe("concise_concepts", config={"data": data, "ent_score": True}) doc = nlp(text) print([(ent.text, ent.label_, ent._.ent_score) for ent in doc.ents]) # output # # [('Sony', 'ORG', 0.63740385), ('Japan', 'GPE', 0.5896993)] ``` ## Custom Embedding Models Use `gensim.Word2vec` `gensim.FastText` or `gensim.KeyedVectors` model from the [pre-trained gensim](https://radimrehurek.com/gensim/downloader.html) library or a custom model path. ```python data = { "fruit": ["apple", "pear", "orange"], "vegetable": ["broccoli", "spinach", "tomato"], "meat": ["beef", "pork", "fish", "lamb"] } # model from https://radimrehurek.com/gensim/downloader.html or path to local file model_path = "glove-wiki-gigaword-300" nlp.add_pipe("concise_concepts", config={"data": data, "model_path": model_path}) ````


نیازمندی

مقدار نام
>=4,<5 gensim
>=1.7,<2.0 scipy
>=3,<4 spacy


زبان مورد نیاز

مقدار نام
>=3.8,<3.12 Python


نحوه نصب


نصب پکیج whl concise-concepts-0.6.3:

    pip install concise-concepts-0.6.3.whl


نصب پکیج tar.gz concise-concepts-0.6.3:

    pip install concise-concepts-0.6.3.tar.gz