معرفی شرکت ها


compscat-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Monte Carlo Simulation of Compton Scattering
ویژگی مقدار
سیستم عامل -
نام فایل compscat-0.3.0
نام compscat
نسخه کتابخانه 0.3.0
نگهدارنده ['Aman Desai']
ایمیل نگهدارنده ['amanmukeshdesai@gmail.com']
نویسنده Aman Desai
ایمیل نویسنده amanmukeshdesai@gmail.com
آدرس صفحه اصلی https://github.com/amanmdesai/compscat
آدرس اینترنتی https://pypi.org/project/compscat/
مجوز -
# CompScat [![License](https://img.shields.io/github/license/amanmdesai/compscat)](https://github.com/amanmdesai/compscat/blob/master/LICENSE.txt) [![Python package](https://github.com/amanmdesai/compscat/actions/workflows/test.yaml/badge.svg?branch=master)](https://github.com/amanmdesai/compscat/actions/workflows/test.yaml) [![GH Pages](https://github.com/amanmdesai/compscat/actions/workflows/pages/pages-build-deployment/badge.svg?branch=master)](https://amanmdesai.github.io/compscat/) [![PyPI Package latest release](https://img.shields.io/pypi/v/compscat.svg)](https://pypi.python.org/pypi/compscat) [![Supported versions](https://img.shields.io/pypi/pyversions/compscat.svg)](https://pypi.python.org/pypi/compscat) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7192619.svg)](https://doi.org/10.5281/zenodo.7192619) ## Author Aman Desai ## Description Monte Carlo simulation of fixed-target Compton scattering. The study has been compared with Madgraph5amc_NLO MC event generator. The full analysis can be found here [Link](https://github.com/amanmdesai/compscat/tree/master/analysis). The analysis is currently done in C++ (ROOT Framework). To analyse the Madgraph LHE file, an LHE reader deverloped [here](https://github.com/amanmdesai/LHE-Reader) is used. ## Physics Representative Feynman diagrams for compton scattering <p align="center"> <img alt="compton-feynman diagram 2" src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/compton.png" width="200"/> <img alt="compton-feynman diagram 2" src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/compton2.png" width="200"/> </p> ## Validation of CompScat The following plots compare the final states for CompScat with the Madgraph5amc_NLO final states. ### Cross section Evaluated using $10^6$ phase points with CompScat and using the Madgraph file as given in analysis folder. Plot showing the cross section versus energy (with error bars): <p align="center"> <img alt="xsec_vs_energy" src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/xsec_vs_energy.jpg" width="350"/> </p> | Initial Photon Energy | CompScat $\sigma$ (milibarn) | Madgraph $\sigma$ (milibarn)| | ----------------------| --------- | ------| | 50 MeV | 15.585 $\pm$ 0.0495 | 15.57 $\pm$ 0.037 | | 100 MeV | 8.783 $\pm$ 0.0361 | 8.799 $\pm$ 0.028 | | 200 MeV | 4.857 $\pm$ 0.0255 | 4.87 $\pm$ 0.019 | | 300 MeV | 3.414 $\pm$ 0.0205 | 3.43 $\pm$ 0.0081 | | 400 MeV | 2.669 $\pm$ 0.0185 | 2.664 $\pm$ 0.0051 | | 500 MeV | 2.194 $\pm$ 0.0161 | 2.203 $\pm$ 0.0044 | In the following, the initial photon energy is set to 0.1 GeV (electron is at rest). ### Photon final state kinematics <p align="center"> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/photon_energy.png" width="250" title="photon_energy" /> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/photon_px.png" width="250" title="photon_px"/> </p> <p align="center"> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/photon_py.png" width="250" title="photon_py"/> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/photon_pz.png" width="250" title="photon_pz"/> </p> ### Electron final state kinematics <p align="center"> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/electron_energy.png" width="250" title="photon_energy"> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/electron_px.png" width="250" title="photon_px"> </p> <p align="center"> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/electron_py.png" width="250" title="photon_py"> <img src="https://raw.githubusercontent.com/amanmdesai/compscat/master/analysis/images/electron_pz.png" width="250" title="photon_pz"> </p> ## Installation Use: ```bash pip install compscat ``` or to install from the latest branch use: ```bash git clone https://github.com/amanmdesai/compscat.git cd compscat pip install . ``` ## Run the generator! Description of the example in notebooks: To import the library use ```python from compscat import CrossSection, SaveEvent,constants,PlotData ``` and then set the energy of the incoming photon in MeV: ```python E = 0.1 ``` The step below is the crucial step as the Cross Section is evaluated here. Only the energy is passed as an argument. ```python w_sum, w_square, w_max = CrossSection( E / constants.m ).integrate_xsec() ``` The script below will generate the events according to the w_max obtained above and Energy specified by the user. Moreover, the below class will also save the events (either as root or in a csv file). To save in root format use: ```python SaveEvent(10000, w_max, E).to_root() ``` else to save them in a csv file use: ```python SaveEvent(10000, w_max, E).to_csv() ``` Finally the scripts below will plot the data and store it as pdf. If you have saved the events in a root format use: ```python PlotData.file("MC_compton.root") ``` else if you are using csv file, use: ```python PlotData.file("MC_compton.csv") ``` ## Evaluate the Cross section See the notebook 'cross-section.ipynb' ## Exercises * Evaluate the cross section of compton scattering using the `CrossSection` module for different initial proton energies. Plot the same. * Study the final states at different energies and plot them on the same plot. * Find the angles $\phi$ and $\theta$ of scattering. * Make a 2D plot of the energy of photon/electron with the angle of scattering ( $\phi$ and $\theta$). ## Acknowledgements We would like to thank Dr. Olivier Mattelaer (UCLouvain, Belgium), whose suggestion on applying cuts in the Madgraph configuration file was helpful in validation of the final states predicted by the CompScat package. We are grateful to Dr. Kilian Lieret (Princeton University, USA), whose suggestion to me about pre-commit config/python packaging (cookiecutter) was helpful in the overall formatting/structuring of the python package. ## References 1. For physics involved in the calculation, see for example, _Introduction to Elementary Particles_, David Griffiths. 2. For monte carlo techniques: _Statistical data analysis_, Glen Cowan, 1998. 3. For the equations used by the simulator see for example, [Link](http://www.personal.soton.ac.uk/ab1u06/teaching/qft/qft1/christmas_problems/2014/XmasProb_DMillar.pdf) 4. Also see: Papaefstathiou, A. How-to: write a parton-level Monte Carlo particle physics event generator. Eur. Phys. J. Plus 135, 497 (2020). 5. Alwall, J. and others, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations.


نیازمندی

مقدار نام
- numpy
- uproot
- matplotlib
- pandas


نحوه نصب


نصب پکیج whl compscat-0.3.0:

    pip install compscat-0.3.0.whl


نصب پکیج tar.gz compscat-0.3.0:

    pip install compscat-0.3.0.tar.gz