معرفی شرکت ها


composeml-0.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

a framework for automated prediction engineering
ویژگی مقدار
سیستم عامل -
نام فایل composeml-0.9.1
نام composeml
نسخه کتابخانه 0.9.1
نگهدارنده []
ایمیل نگهدارنده ['"Alteryx, Inc." <open_source_support@alteryx.com>']
نویسنده -
ایمیل نویسنده "Alteryx, Inc." <open_source_support@alteryx.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/composeml/
مجوز BSD 3-clause
<p align="center"><img width=50% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/compose.png" alt="Compose" /></p> <p align="center"><i>"Build better training examples in a fraction of the time."</i></p> <p align="center"> <a href="https://github.com/alteryx/compose/actions?query=workflow%3ATests" target="_blank"> <img src="https://github.com/alteryx/compose/workflows/Tests/badge.svg" alt="Tests" /> </a> <a href="https://codecov.io/gh/alteryx/compose"> <img src="https://codecov.io/gh/alteryx/compose/branch/main/graph/badge.svg?token=mDz4ueTUEO"/> </a> <a href="https://compose.alteryx.com/en/stable/?badge=stable" target="_blank"> <img src="https://readthedocs.com/projects/feature-labs-inc-compose/badge/?version=stable&token=5c3ace685cdb6e10eb67828a4dc74d09b20bb842980c8ee9eb4e9ed168d05b00" alt="ReadTheDocs" /> </a> <a href="https://badge.fury.io/py/composeml" target="_blank"> <img src="https://badge.fury.io/py/composeml.svg?maxAge=2592000" alt="PyPI Version" /> </a> <a href="https://stackoverflow.com/questions/tagged/compose-ml" target="_blank"> <img src="https://img.shields.io/badge/questions-on_stackoverflow-blue.svg?" alt="StackOverflow" /> </a> <a href="https://pepy.tech/project/composeml" target="_blank"> <img src="https://pepy.tech/badge/composeml/month" alt="PyPI Downloads" /> </a> </p> <hr> [Compose](https://compose.alteryx.com) is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a *labeling function*, then runs a search to automatically extract training examples from historical data. Its result is then provided to [Featuretools](https://docs.featuretools.com/) for automated feature engineering and subsequently to [EvalML](https://evalml.alteryx.com/) for automated machine learning. The workflow of an applied machine learning engineer then becomes: <br><p align="center"><img width=90% src="https://raw.githubusercontent.com/alteryx/compose/main/docs/source/images/workflow.png" alt="Compose" /></p><br> By automating the early stage of the machine learning pipeline, our end user can easily define a task and solve it. See the [documentation](https://compose.alteryx.com) for more information. ## Installation Install with pip ``` python -m pip install composeml ``` or from the Conda-forge channel on [conda](https://anaconda.org/conda-forge/composeml): ``` conda install -c conda-forge composeml ``` ### Add-ons **Update checker** - Receive automatic notifications of new Compose releases ``` python -m pip install "composeml[update_checker]" ``` ## Example > Will a customer spend more than 300 in the next hour of transactions? In this example, we automatically generate new training examples from a historical dataset of transactions. ```python import composeml as cp df = cp.demos.load_transactions() df = df[df.columns[:7]] df.head() ``` <table border="0" class="dataframe"> <thead> <tr style="text-align: right;"> <th>transaction_id</th> <th>session_id</th> <th>transaction_time</th> <th>product_id</th> <th>amount</th> <th>customer_id</th> <th>device</th> </tr> </thead> <tbody> <tr> <td>298</td> <td>1</td> <td>2014-01-01 00:00:00</td> <td>5</td> <td>127.64</td> <td>2</td> <td>desktop</td> </tr> <tr> <td>10</td> <td>1</td> <td>2014-01-01 00:09:45</td> <td>5</td> <td>57.39</td> <td>2</td> <td>desktop</td> </tr> <tr> <td>495</td> <td>1</td> <td>2014-01-01 00:14:05</td> <td>5</td> <td>69.45</td> <td>2</td> <td>desktop</td> </tr> <tr> <td>460</td> <td>10</td> <td>2014-01-01 02:33:50</td> <td>5</td> <td>123.19</td> <td>2</td> <td>tablet</td> </tr> <tr> <td>302</td> <td>10</td> <td>2014-01-01 02:37:05</td> <td>5</td> <td>64.47</td> <td>2</td> <td>tablet</td> </tr> </tbody> </table> First, we represent the prediction problem with a labeling function and a label maker. ```python def total_spent(ds): return ds['amount'].sum() label_maker = cp.LabelMaker( target_dataframe_index="customer_id", time_index="transaction_time", labeling_function=total_spent, window_size="1h", ) ``` Then, we run a search to automatically generate the training examples. ```python label_times = label_maker.search( df.sort_values('transaction_time'), num_examples_per_instance=2, minimum_data='2014-01-01', drop_empty=False, verbose=False, ) label_times = label_times.threshold(300) label_times.head() ``` <table border="0" class="dataframe"> <thead> <tr style="text-align: right;"> <th>customer_id</th> <th>time</th> <th>total_spent</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2014-01-01 00:00:00</td> <td>True</td> </tr> <tr> <td>1</td> <td>2014-01-01 01:00:00</td> <td>True</td> </tr> <tr> <td>2</td> <td>2014-01-01 00:00:00</td> <td>False</td> </tr> <tr> <td>2</td> <td>2014-01-01 01:00:00</td> <td>False</td> </tr> <tr> <td>3</td> <td>2014-01-01 00:00:00</td> <td>False</td> </tr> </tbody> </table> We now have labels that are ready to use in [Featuretools](https://docs.featuretools.com/) to generate features. ## Support The Innovation Labs open source community is happy to provide support to users of Compose. Project support can be found in three places depending on the type of question: 1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/compose-ml) with the `composeml` tag. 2. For bugs, issues, or feature requests start a Github [issue](https://github.com/alteryx/compose/issues/new). 3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA). 4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com ## Citing Compose Compose is built upon a newly defined part of the machine learning process — prediction engineering. If you use Compose, please consider citing this paper: James Max Kanter, Gillespie, Owen, Kalyan Veeramachaneni. [Label, Segment,Featurize: a cross domain framework for prediction engineering.](https://dai.lids.mit.edu/wp-content/uploads/2017/10/Pred_eng1.pdf) IEEE DSAA 2016. BibTeX entry: ```bibtex @inproceedings{kanter2016label, title={Label, segment, featurize: a cross domain framework for prediction engineering}, author={Kanter, James Max and Gillespie, Owen and Veeramachaneni, Kalyan}, booktitle={2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)}, pages={430--439}, year={2016}, organization={IEEE} } ``` ## Acknowledgements The open source development has been supported in part by DARPA's Data driven discovery of models program (D3M). ## Alteryx **Compose** is an open source project maintained by [Alteryx](https://www.alteryx.com). We developed Compose to enable flexible definition of the machine learning task. To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch. <p align="center"> <a href="https://www.alteryx.com/open-source"> <img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/> </a> </p>


نیازمندی

مقدار نام
>=1.3.0 pandas
>=4.32.0 tqdm
>=3.3.3 matplotlib
>=0.11.0 seaborn
- composeml[updater]
==2.1.12 codecov
==4.0.1 flake8
==5.9.3 isort
==22.10.0 black
==0.8.7 nbsphinx
==0.7.1 pydata-sphinx-theme
==4.2.0 Sphinx
==2022.1.2b11 sphinx-inline-tabs
==0.4.0 sphinx-copybutton
==0.16.1 myst-parser
==6.4.5 nbconvert
==7.31.1 ipython
==2.10.0 pygments
==1.0.0 jupyter
==1.1.0 pandoc
==6.4.2 ipykernel
!=0.22,<1.2.0,>=0.20.0 scikit-learn
>=0.45.0 evalml
>=21.3.1 pip
==3.0.0 pytest-cov
>=2.5.0 pytest-xdist
>=0.33.1 wheel
>=1.4.0 featuretools
>=0.11.0 woodwork
>=3.0.0 pyarrow
>=2.1.0 alteryx-open-src-update-checker


زبان مورد نیاز

مقدار نام
<4,>=3.8 Python


نحوه نصب


نصب پکیج whl composeml-0.9.1:

    pip install composeml-0.9.1.whl


نصب پکیج tar.gz composeml-0.9.1:

    pip install composeml-0.9.1.tar.gz