معرفی شرکت ها


compling-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Computational Linguistic
ویژگی مقدار
سیستم عامل -
نام فایل compling-0.0.9
نام compling
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Francesco Periti
ایمیل نویسنده peritifrancesco@gmail.com
آدرس صفحه اصلی https://github.com/FrancescoPeriti/compling
آدرس اینترنتی https://pypi.org/project/compling/
مجوز -
# compling #### Computational Linguistic with Python [![Build Status](https://travis-ci.org/joemccann/dillinger.svg?branch=master)](https://travis-ci.org/joemccann/dillinger) **compling** is a Python module that provides some **_Natural Language Processing_** and **_Computational Linguistics_** functionalities to work with human language data. It incorporates various _Data_ and _Text Mining_ features from other famous libraries (e.g. [spacy](https://pypi.org/project/spacy/), [nltk](https://pypi.org/project/nltk/), [sklearn](https://pypi.org/project/scikit-learn/), ...) in order to arrange a pipeline aimed at the analysis of corpora of _JSON_ documents. ### Documentation See documentation [here](http://pycompling.altervista.org/). ### Installation You can install **compling** with: ```sh $ pip install compling ``` **compling** requires: + _Python_ (>= 3.6) + _numpy_ + _spacy_ + _nltk_ + _gensim_ + _tqdm_ + _unicodedata2_ + _unidecode_ + configparser_ + _vaderSentiment_ + _wordcloud_ You also need to download: * a ++_spacy language model_++ <br/> See [here](https://spacy.io/models) the available models. You can choose based on the language of your corpus documents. By default, **complig** expects you to download _sm_ models. You can still choose to download larger models, but remember to edit the [_confg.ini_](#config.ini) file, so it can work properly. _Example_ <br/> Let's assume the language of your documents is _English_. You could download the _spacy small english model_: ```sh python -m spacy download en_core_web_sm ``` * some ++_nltk functionalities_++: <br/> * _stopwords_ ```sh $ python -m nltk.downloader stopwords ``` * _punkt_ ```sh $ python -m nltk.downloader punkt ``` ### config.ini The functionalities offered by **compling** may require a large variety of parameters. To facilitate their use, default values are provided for some parameters: - some can be changed in the function invocation. Many functions provide optional parameters; - others are stored in the ++_config.ini_++ file. This file configures the processing of your corpora. It contains the values of some special parameters. (e.g. _the language of documents in your corpus._) You can see a preview below: ```ini [Corpus] ;The language of documents in your corpus. language = english ;Documents in your corpus store their text in this key. text_key = text ;Documents in your corpus store their date values as string in this format. ;For a complete list of formatting directives, see: https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior. date_format = %d/%m/%Y ;The size of spacy model you want it to be used in the text processing spacy_model_size = md [Document_record] ;Document records metadata: ;If lower==1, A lowercase version will be stored for each document. lower = 0 ;If lemma==1, A version with tokens replace by their lemma will be stored for each document. lemma = 0 ;If stem==1, A version with tokens replace by their stem will be stored for each document. stem = 0 ;If negations==1, A version where negated token are preceded by 'NOT_' prefix will be stored for each document. negations = 1 ;If named_entities==1, the occurring named entities will be stored in a list for each document. named_entities = 1 ; ... ``` ##### ConfigManager **compling** provides the _ConfigManager_ class to make it easier for you to edit the _config.ini_ file and to help you handling the corpora processing . #### example of usage (compling) You can see a short example of usage at [https://github.com/FrancescoPeriti/compling](https://github.com/FrancescoPeriti/compling). See the [documentation](http://pycompling.altervista.org/) for more details.


نیازمندی

مقدار نام
- pandas
- sklearn
- matplotlib
- numpy
- spacy
- nltk
- tqdm
- unicodedata2
- gensim
- configparser
- vaderSentiment
- unidecode
- wordcloud


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl compling-0.0.9:

    pip install compling-0.0.9.whl


نصب پکیج tar.gz compling-0.0.9:

    pip install compling-0.0.9.tar.gz