معرفی شرکت ها


comparecast-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Comparing Sequential Forecasters
ویژگی مقدار
سیستم عامل -
نام فایل comparecast-0.3.0
نام comparecast
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yo Joong Choe, Aaditya Ramdas
ایمیل نویسنده yjchoe@cmu.edu
آدرس صفحه اصلی https://github.com/yjchoe/ComparingForecasters
آدرس اینترنتی https://pypi.org/project/comparecast/
مجوز MIT
# ComparingForecasters [![image](https://img.shields.io/pypi/v/comparecast.svg)](https://pypi.org/project/comparecast/) [![image](https://img.shields.io/pypi/l/comparecast.svg)](https://pypi.org/project/comparecast/) Code accompanying our paper, [_Comparing Sequential Forecasters_](https://arxiv.org/abs/2110.00115) _(under revision)_, where we derive anytime-valid, distribution-free, and non-asymptotic confidence sequences (CS) and e-processes for comparing probability forecasts on sequential data. ## Installation Requires Python 3.7+. From `pip`: ```shell pip install --upgrade pip pip install --upgrade pandas seaborn tqdm confseq pip install --upgrade comparecast ``` From source: ```shell git clone https://github.com/yjchoe/ComparingForecasters cd ComparingForecasters pip install --upgrade pip pip install -r requirements.txt pip install -e . ``` ## Data Sources See [`data/README.md`](data/README.md). ## Sample Usage Also see experiment notebooks below. ### Python ```python import comparecast as cc # Generate/retrieve synthetic data data = cc.data_utils.synthetic.get_data("default", size=1000) # Calculate, save, and plot the forecasts forecasters = ["k29_poly3", "laplace", "constant_0.5"] data = cc.forecast(data, forecasters, out_file="data/test.csv") cc.plot_forecasts(data, forecasters, plots_dir="plots/test") # Compare forecasts using confidence sequences & e-values results = cc.compare_forecasts( data, "k29_poly3", "laplace", scoring_rule="brier", alpha=0.05, compute_cs=True, compute_e=True, ) # returns a pandas DataFrame results.tail(5) # time lcb ucb e_pq e_qp # 995 996 0.012868 0.072742 2025.725774 0.021684 # 996 997 0.013050 0.072879 2157.262456 0.021672 # 997 998 0.012635 0.072492 1886.687861 0.021596 # 998 999 0.012824 0.072637 2013.209084 0.021583 # 999 1000 0.012447 0.072275 1783.204679 0.021519 # Draw a comparison plot and save in plots/test/*.pdf results, axes = cc.plot_comparison( data, "k29_poly3", "laplace", scoring_rule="brier", alpha=0.05, baselines=("h", "acs"), plot_e=True, plot_width=True, plots_dir="plots/test", ) ``` ### Command Line Interface ```shell # Generate synthetic data and forecasts python3 forecast.py -d default -n 1000 -f all \ -o forecasts/test.csv -p plots/test # Compare forecasts and plot results python3 plot_comparisons.py -d forecasts/test.csv \ -p k29_poly3 -q laplace --baselines h acs -o plots/test # Compare 538 and vegas forecasters python3 plot_comparisons.py -d forecasts/mlb_2010_2019.csv \ -p fivethirtyeight -q vegas --baselines acs -o plots/test/mlb_2010_2019 \ --ylim-scale 0.01 ``` ## Experiments Main experiments: - [**`nb_comparecast_synthetic.ipynb`**](nb_comparecast_synthetic.ipynb): Experiments on synthetic data and forecasts. Includes comparison with a fixed-time CI. Section 5.1 in our paper. - [**`nb_comparecast_scoringrules.ipynb`**](nb_comparecast_scoringrules.ipynb): Experiments on synthetic data and forecasts using different scoring rules. Section 5.1 (Figure 4) in our paper. - [**`nb_comparecast_baseball.ipynb`**](nb_comparecast_baseball.ipynb): Experiments on Major League Baseball forecasts, leading up to the 2019 World Series. Section 5.2 in our paper. - [**`nb_comparecast_weather.ipynb`**](nb_comparecast_weather.ipynb): Experiments on postprocessing methods for ensemble weather forecasts. Includes e-value comparison with [Henzi & Ziegel (2021)](https://arxiv.org/abs/2103.08402). Section 5.3 in our paper. Additional experiments: - [**`nb_comparecast_weather_eda.ipynb`**](nb_comparecast_weather_eda.ipynb): Exploratory plots on the ensemble weather forecast dataset. Appendix I.3 in our paper. - [**`nb_iid_mean.ipynb`**](nb_iid_mean.ipynb): Comparison of uniform boundaries on the mean of IID data. Partly reproduces Figure 1 from [Howard et al. (2021)](https://doi.org/10.1214/20-AOS1991). Appendix I.4 in our paper. - [**`nb_cgf_convexity.ipynb`**](nb_cgf_convexity.ipynb): Illustration of the Exponential CGF-like function. Appendix F.2 (Figure 6) in our paper. - [**`nb_comparecast_comparison_with_dm.ipynb`**](nb_comparecast_comparison_with_dm.ipynb): Validity comparison with classical comparison methods (DM & GW). Appendix H.2 (Figure 7) in our paper. - [**`nb_comparecast_comparison_with_dm_power.ipynb`**](nb_comparecast_comparison_with_dm_power.ipynb): "Power" comparison with classical comparison methods (DM & GW). Appendix H.2 (Figure 8) in our paper. - [**`nb_eprocess_ville.ipynb`**](nb_eprocess_ville.ipynb): Illustrating some properties of (sub-exponential) e-/p-processes in the context of game-theoretic statistical inference. Not used in our paper. ## License MIT ## Authors [YJ Choe](http://yjchoe.github.io/) and [Aaditya Ramdas](https://www.stat.cmu.edu/~aramdas/)


نیازمندی

مقدار نام
>=1.20 numpy
- scipy
>=1.0 pandas
>=0.11 seaborn
- tqdm
- openpyxl
>=0.0.9 confseq


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl comparecast-0.3.0:

    pip install comparecast-0.3.0.whl


نصب پکیج tar.gz comparecast-0.3.0:

    pip install comparecast-0.3.0.tar.gz