معرفی شرکت ها


compadre-1.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Compatible Particle Discretization and Remap
ویژگی مقدار
سیستم عامل -
نام فایل compadre-1.0.8
نام compadre
نسخه کتابخانه 1.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Paul Kuberry
ایمیل نویسنده pkuberry@gmail.com
آدرس صفحه اصلی https://github.com/SNLComputation/compadre
آدرس اینترنتی https://pypi.org/project/compadre/
مجوز -
# COMpatible PArticle Discretization and REmap Toolkit ## About The Compadre Toolkit provides a performance portable solution for the parallel evaluation of computationally dense kernels. The toolkit specifically targets the Generalized Moving Least Squares (GMLS) approach, which requires the inversion of small dense matrices. The result is a set of weights that provide the information needed for remap or entries that constitute the rows of some globally sparse matrix. This toolkit focuses on the 'on-node' aspects of meshless PDE solution and remap, namely the parallel construction of small dense matrices and their inversion. What it does **not** provide is the tools for managing fields, inverting globally sparse matrices, or neighbor search that requires orchestration over many MPI processes. This toolkit is designed to be easily dropped-in to an existing MPI (or serial) based framework for PDE solution or remap, with minimal dependencies ([Kokkos](https://github.com/kokkos/kokkos) and either [Cuda Toolkit](https://developer.nvidia.com/cuda-toolkit) or [LAPACK](http://www.netlib.org/lapack/)). ### Generalized Moving Least Squares (GMLS) A GMLS problem requires the specification of a target functional ![equation](https://latex.codecogs.com/gif.latex?\tau) (Compadre::TargetOperation), a reconstruction space ![equation](https://latex.codecogs.com/gif.latex?V) (Compadre::ReconstructionSpace), and a sampling functional ![equation](https://latex.codecogs.com/gif.latex?\lambda) (Compadre::SamplingFunctional). The Compadre Toolkit is designed to efficiently assemble, factorize, and solve large batches of minimization problems having the form: ![equation](https://latex.codecogs.com/png.latex?%5Cbg_white%20%5Clarge%20%5C%5C%20%5Cbegin%7Balign*%7D%20p%5E%7B*%7D%26%20%3D%26%20%5Cunderset%7Bp%20%5Cin%20V%7D%7B%5Ctext%7Barg%20min%7D%7D%5C%3B%5Cfrac%7B1%7D%7B2%7D%5Csum_%7Bj%3D1%7D%5EN%20%28%5Clambda_j%28u%29-%5Clambda_j%28p%29%29%5E%7B2%7D%5Comega%28%5Ctau%3B%5Clambda_j%29%5C%5C%5C%5C%20%26%26%5Ctau%28u%29%20%5Capprox%20%5Ctau%28p%5E%7B*%7D%29%20%5Cend%7Balign*%7D) <!--- https://www.codecogs.com/latex/eqneditor.php \[\large \begin{align*} p^{*}& =& \underset{p \in V}{\text{arg min}}\;\frac{1}{2}\sum_{j=1}^N (\lambda_j(u)-\lambda_j(p))^{2}\omega(\tau;\lambda_j)\\\\ &&\tau(u) \approx \tau(p^{*}) \end{align*} \] ---> ## Wiki Information Details about building and using the Compadre toolkit can be found on the [Wiki](https://github.com/SNLComputation/compadre/wiki). ## Recent Changes [Recent Changes](https://github.com/SNLComputation/compadre/wiki/Changelog) ## Installation [Installation of Kokkos and KokkosKernels](https://github.com/SNLComputation/compadre/wiki/Kokkos-and-KokkosKernels) [Either automatically configured and built, or user installation location provided] [Installation of Compadre](https://github.com/SNLComputation/compadre/wiki/Building-Compadre) ## Documentation and Tutorials The toolkit is documented by Doxygen. <b>[Documentation is available online](https://snlcomputation.github.io/compadre/index.html)</b> or can be compiled from source. To compile from source: 1.) install doxygen software on your computer, 2.) execute '>> make doc' after having installed the Compadre Toolkit. HTML and Latex documentation will be generated in the <b>doc/</b> folder, in-source. ## Citing the Software If you write a paper using results obtained with the help of the Compadre Toolkit, please cite the following reference: ``` @software{paul_kuberry_2020_3703333, author = {Paul Kuberry and Peter Bosler and Nathaniel Trask}, title = {Compadre Toolkit}, month = mar, year = 2020, publisher = {Zenodo}, version = {v1.0.3}, doi = {10.5281/zenodo.3703333}, url = {https://doi.org/10.5281/zenodo.3703333} } ``` If you would like to export the reference information to either CSL, DataCite, Dublin, Core, JSON, JSON-LD, MARCXML, or Mendeley, please find the export section at the bottom-right corner once you follow the link below: <a href="https://doi.org/10.5281/zenodo.3338664" target="_blank"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3703333.svg"></a>


زبان مورد نیاز

مقدار نام
>3.4.0 Python


نحوه نصب


نصب پکیج whl compadre-1.0.8:

    pip install compadre-1.0.8.whl


نصب پکیج tar.gz compadre-1.0.8:

    pip install compadre-1.0.8.tar.gz