معرفی شرکت ها


commonroad-io-2023.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python tool to read, write, and visualize CommonRoad scenarios and solutions for automated vehicles.
ویژگی مقدار
سیستم عامل -
نام فایل commonroad-io-2023.1
نام commonroad-io
نسخه کتابخانه 2023.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Cyber-Physical Systems Group, Technical University of Munich
ایمیل نویسنده commonroad@lists.lrz.de
آدرس صفحه اصلی https://commonroad.in.tum.de
آدرس اینترنتی https://pypi.org/project/commonroad-io/
مجوز BSD
# CommonRoad [![Linux](https://svgshare.com/i/Zhy.svg)](https://svgshare.com/i/Zhy.svg) [![macOS](https://svgshare.com/i/ZjP.svg)](https://svgshare.com/i/ZjP.svg) [![Windows](https://svgshare.com/i/ZhY.svg)](https://svgshare.com/i/ZhY.svg) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/commonroad-io.svg)](https://pypi.python.org/pypi/commonroad-io/) [![PyPI version fury.io](https://badge.fury.io/py/commonroad-io.svg)](https://pypi.python.org/pypi/commonroad-io/) [![PyPI download month](https://img.shields.io/pypi/dm/commonroad-io.svg?label=PyPI%20downloads)](https://pypi.python.org/pypi/commonroad-io/) [![PyPI download week](https://img.shields.io/pypi/dw/commonroad-io.svg?label=PyPI%20downloads)](https://pypi.python.org/pypi/commonroad-io/) [![PyPI license](https://img.shields.io/pypi/l/commonroad-io.svg)](https://pypi.python.org/pypi/commonroad-io/) [![Documentation Status](https://readthedocs.org/projects/commonroad-io/badge/?version=latest)](http://commonroad-io.readthedocs.io/?badge=latest) Numerical experiments for motion planning of road vehicles require numerous ingredients: vehicle dynamics, a road network, static obstacles, dynamic obstacles and their movement over time, goal regions, a cost function, etc. Providing a description of the numerical experiment precise enough to reproduce it might require several pages of information. Thus, only key aspects are typically described in scientific publications, making it impossible to reproduce results - yet, reproducibility is an important asset of good science. Composable benchmarks for motion planning on roads (CommonRoad) are proposed so that numerical experiments are fully defined by a unique ID; all required information to reconstruct the experiment can be found on [commonroad.in.tum.de](https://commonroad.in.tum.de/). Each benchmark is composed of a [vehicle model](https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/blob/master/vehicleModels_commonRoad.pdf), a [cost function](https://gitlab.lrz.de/tum-cps/commonroad-cost-functions/blob/master/costFunctions_commonRoad.pdf), and a [scenario](https://commonroad.in.tum.de/scenarios/) (including goals and constraints). The scenarios are partly recorded from real traffic and partly hand-crafted to create dangerous situations. Solutions to the benchmarks can be uploaded and ranked on the CommonRoad Website. Learn more about the scenario specification [here](https://gitlab.lrz.de/tum-cps/commonroad-scenarios/blob/master/documentation/XML_commonRoad_2020a.pdf). # commonroad-io The commonroad-io package provides methods to read, write, and visualize CommonRoad scenarios and planning problems. Furthermore, it can be used as a framework for implementing motion planning algorithms to solve CommonRoad Benchmarks and is the basis for other tools of the CommonRoad Framework. With commonroad-io, those solutions can be written to xml-files for uploading them on [commonroad.in.tum.de](https://commonroad.in.tum.de/). commonroad-io 2023.1 is compatible with CommonRoad scenarios in version 2020a and supports reading 2018b scenarios. The software is written in Python and tested on Linux for the Python 3.7, 3.8, 3.9, 3.10, and 3.11. ## Documentation The full documentation of the API and introducing examples can be found under [commonroad.in.tum.de](https://commonroad-io.readthedocs.io/en/latest/). For getting started, we recommend our [tutorials](https://commonroad.in.tum.de/commonroad-io). ## Additional Tools Based on commonroad-io, we have developed a list of tools supporting the development of motion-planning algorithms: * [Drivability Checker](https://commonroad.in.tum.de/tools/drivability-checker) * [CommonRoad-SUMO Interface](https://commonroad.in.tum.de/tools/sumo-interface) * [Scenario Designer](https://commonroad.in.tum.de/tools/scenario-designer) * [Vehicle Models](https://commonroad.in.tum.de/tools/model-cost-functions) * [Dateset Converters](https://gitlab.lrz.de/tum-cps/dataset-converters) * [Interactive Scenarios](https://gitlab.lrz.de/tum-cps/commonroad-interactive-scenarios) * [Apollo Interface](https://gitlab.lrz.de/tum-cps/commonroad-apollo-interface) ## Requirements The required dependencies for running commonroad-io are: * numpy>=1.13 * scipy>=1.5.2 * shapely>=2.0.1 * matplotlib>=2.2.2 * lxml>=4.2.2 * networkx>=2.2 * Pillow>=7.0.0 * commonroad-vehicle-models>=2.0.0 * rtree>=0.8.3 * protobuf==3.20.1 ## Installation commonroad-io can be installed with:: pip install commonroad-io Alternatively, clone from our gitlab repository:: git clone https://gitlab.lrz.de/tum-cps/commonroad_io.git and add the folder commonroad-io to your Python environment. ## Changelog Compared to version 2022.3, the following features have been added or changed: ### Added - Support for shapely>=2.0.0 ### Fixed - Writing scenarios without location to protobuf - Dashed lanelet boundaries with fixed dash position - Default plot limits for focused obstacle - Use dt from scenario as default for video creation - Apply axis visible-option also for video creation - Protobuf FileReader marking road network related IDs as used - State attribute comparison ### Changed - Name of SIDEWALK and BUSLANE traffic signs to PEDESTRIAN_SIDEWALK and BUS_LANE - Packaging and dependency management using poetry ## Authors Contribution (in alphabetic order by last name): Yannick Ballnath, Behtarin Ferdousi, Luis Gressenbuch, Moritz Klischat, Markus Koschi, Sebastian Maierhofer, Stefanie Manzinger, Christina Miller, Christian Pek, Anna-Katharina Rettinger, Simon Sagmeister, Moritz Untersperger, Murat Üste, Xiao Wang ## Credits We gratefully acknowledge partial financial support by * DFG (German Research Foundation) Priority Program SPP 1835 Cooperative Interacting Automobiles * BMW Group within the Car@TUM project * German Federal Ministry of Economics and Technology through the research initiative Ko-HAF ## Citation **If you use our code for research, please consider to cite our paper:** ``` @inproceedings{Althoff2017a, author = {Althoff, Matthias and Koschi, Markus and Manzinger, Stefanie}, title = {CommonRoad: Composable benchmarks for motion planning on roads}, booktitle = {Proc. of the IEEE Intelligent Vehicles Symposium}, year = {2017}, abstract = {Numerical experiments for motion planning of road vehicles require numerous components: vehicle dynamics, a road network, static obstacles, dynamic obstacles and their movement over time, goal regions, a cost function, etc. Providing a description of the numerical experiment precise enough to reproduce it might require several pages of information. Thus, only key aspects are typically described in scientific publications, making it impossible to reproduce results—yet, re- producibility is an important asset of good science. Composable benchmarks for motion planning on roads (CommonRoad) are proposed so that numerical experiments are fully defined by a unique ID; all information required to reconstruct the experiment can be found on the CommonRoad website. Each benchmark is composed by a vehicle model, a cost function, and a scenario (including goals and constraints). The scenarios are partly recorded from real traffic and partly hand-crafted to create dangerous situations. We hope that CommonRoad saves researchers time since one does not have to search for realistic parameters of vehicle dynamics or realistic traffic situations, yet provides the freedom to compose a benchmark that fits one’s needs.}, } ```


نیازمندی

مقدار نام
>=1.13,<1.22 numpy
>=1.22 numpy
>=1.24,<2.0 numpy
>=1.5.2 scipy
>=1.9,<2.0 scipy
>=2.0.1,<3.0.0 shapely
>=3.0.0 matplotlib
>=4.2.2 lxml
>=2.2 networkx
>=7.0.0 Pillow
>=1.0.1 iso3166
>=2.0.0 commonroad-vehicle-models
>=0.8.3 rtree
==3.20.1 protobuf
>=2.0 omegaconf
>=4.64 tqdm


زبان مورد نیاز

مقدار نام
>=3.7,<4.0 Python


نحوه نصب


نصب پکیج whl commonroad-io-2023.1:

    pip install commonroad-io-2023.1.whl


نصب پکیج tar.gz commonroad-io-2023.1:

    pip install commonroad-io-2023.1.tar.gz